

Electronics for the RICH detectors of the HADES and CBM experiments

Jan Michel¹, Mike Faul², Jürgen Friese³, Karl-Heinz Kampert⁴, Vivek Patel⁴ Christian Pauly⁴, Dennis Pfeifer⁴, Peter Skott², Michael Traxler², Cahit Ugur² ¹ Goethe Universität Frankfurt, ² GSI Darmstadt, ³ TU München, ⁴ Bergische Universität Wuppertal

The RICH detectors

HADES RICH

- operational since 2000 @ GSI
 - 1.2 m² detector surface
 - 28,000 channels
- Csl cathode to be replaced by PMT

CBM RICH

- to be finished in 2020 @ FAIR
- 2.8 m² detector surface
- 60,000 channels
- 10 MHz collision rate
- up to 200 GBit/s

Collaboration

Common Challenges densly packed channels, 3 px/cm² small single-photon signals timing precision ~ 100 ps

Savings in Collaboration PMTs will be used in both detectors Major parts of electronics identical

Design Policy

all electronics fit to back of PMTs small modules for flexibility

Panda DIRC

Same scheme is planned for the Panda Barrel DIRC

- MCP-PMT (better timing, magnetic fields, 2x smaller signal)
- 11,000 channels
- similar rates to CBM

This project makes use of the developments made within the TRB collaboration during the past years contributed by people from various institutes and experimental groups

Assembly

Data Concentrator

The current read-out plane of the HADES RICH with electronics

CAD model of the CBM RICH height 5 meter

use dedicated, discrete amplifiers in-FPGA time measurement low power to ease cooling modular design to separate functions use space efficiently as few cables as possible

backplane fitted with 74 read-out modules

Components

- MAPMT carrier backplane
- Analog & TDC front-end card
- Data concentrator for DAQ connection
- Power supply card
- Connectivity: power, optical, HV
 - Optional: clock, trigger

Rate Capabilities

- Electronics > 5 MHz/channel
- Data links > 20 MHz/module optional trigger windows
- CBM: up to 200 kHz/channel or 60 MHz/module
 - Needs data concentrator upgrade

Photo Multiplier

- Multi-Anode PMTs Hamamatsu H12700
 - 64 Pixel, 6 x 6 mm² each
 - sensitivity 200 600 nm
 - single photon efficiency >30%
 - timing 300 ps (TTS)

Backplane

Combines 6 PMT with all electronics to one read-out module

- all electrical connections, no active components
- light & gas-tight shield
- complex design due to number of connections
- mix of analog and digital signals

- Lattice ECP3-150 FPGA
- Bi-directional links to all 12 front-ends
- Event data is merged into one packet
- Optical link to central DAQ 2.4 GBit/s
- Inputs for external clock and reference time
- Output for trigger signal to run DAQ on any coincidence or pixel multiplicity

Upgrade Options

- CBM data rates exceed 5 GBit/s per module in central parts of the detector
- Concentrator replaced independently with new module with 1/2 4.8 GBit/s links

Data Transport

Further data

Power Board

- DC/DC converters to produce all required voltages
- Option: direct supply without converters for noise reduction (to be quantified)
- Voltage and current monitoring
- Power dissipation: about 25 W per module Total power consumption: about 2 kW (HADES)

Front-end Board

- Each PMT is read out by two front-end cards
- 32 analog channels
- Local linear voltage regulators
- ultra-low drop (< 40 mV)
- 47 x 100 mm
- FPGA (Lattice ECP5-85)
- Thresholds
 - internal Delta-Sigma-DAC + Filter
- Discrimination
 - comparator in LVDS receivers
- Time Measurement
- DAQ logic Read-out, Triggering

Analog Stage

- low power shaping amplifier discrete off-the-shelf components
- Voltage [mV

- - small footprint: 12 x 2.7 mm²
 - mostly 0201 (0603 metric) components
 - 12 mW @ 1.1 V
 - Amplification ~ 20 30 depending on amplitude

All communication is transported over TrbNet, the HADES DAQ network protocol

- Trigger / Synchronization
- Event data
- Slow Control
- 2 GBit/s LVDS (backplane) or optical fiber

Forwarded to server farm via GbE

based on TRB3 boards

aggregation in hubs

Read-out Modes

HADES CBM

- triggered DAQ free running DAQ
- merging of data based merging of data based on event numbers on time slices
 - centrally controlled free-streaming
 - read out synchronuous clocking

Systems based on same low-level network with Identical features for slow-control, monitoring ...

Time Measurement

FPGA-based discriminator

- Timing precision ~ 20 ps
- PMT timing ~ 300 ps

Partly equipped

Close view of the DiRich

read-out module

electronics module

10 x 15 cm, 384 channels

- high precision needed for ToT (amplitude, e.g. double hits)
- Measurement of both edges in same

Example signals. Top: Input, Bottom: Output Shown are two typical PMT signals with 12 mV and 4 mV amplitude

 Channels galvanically isolated threshold ~ 1 mV of input

TDC channel using internal stretcher method (see 2016 JINST 11 C01046)

Architecture of the in-FPGA TDC

The falling edge of the input can not be detected due to the intrinsic dead-time of the TDC. Instead, routing is used to delay the falling edge until the TDC is ready again.

Photography: G. Otto (GSI) **Contact:** michel@physik.uni-frankfurt.de TRB collaboration: http://trb.gsi.de

This work is supported by GSI and BMBF grant 05P15PXFCA

