QA Documentation March 2024

Main - MainTrigger

- Top left
 - Set trigger bits. This should match the trigger setting
 - Compare to CTS monitor: Bits are the last column, from top to bottom. Bit 12 corresponds to PT2 trigger
- Top middle
 - Statistics for each trigger type. 'real' are normal events, (CTS and MDC must show up as well in equal parts (once per second))
- Top right: Just a multiplicity, should look like on this plot
- Bottom
 - Average multiplicity per event for Tof, Rpc and combined (f.l.t.r)
 - Shown for PT1, PT2, PT3. Average should match the corresponding trigger setting (M2, M5 and M20)

Main - MainTriggerTrend

• Just trends, should be stable around these values...

Start – Main 2024

- Top row: Distribution of hist on the strips of start detector
 - A beam profile should be visible (gaps may be there)
- Middle left: beam spot (with blank lines from above)
- Middle middle: time over treshold for channels, should be \sim 7 for the first 2 modules and \sim 9 for the 4th.
- Middle right: Amount of hits time coincidences, proportional to the average multi below
- Bottom right: Multiplicity of fired strips per event, Same amount in each bin
- Bottom: time difference for modules 1 and 2 with respect to the central one
 - Should be around 0 for all channels in the range of +-10, but may have shifted time between module 1 and 2

Rich - TotalMult

hRichRingsTrend 29.2.2024 21:4:37

- Trend plots in RICH
 - Left: Number of RICH cals (detected photons) in full RICH per event
 - Right: Number of reconstructed rings in full RICH per event

Rich - SecMultCals

- Trend plots in RICH
 - Number of detected photons (RICH cals) per event. One plot for each of the six HADES sectors

Rich – SecMultRings

- Trend plots in RICH
 - Number of detected rings per event. One plot for each of the six HADES sectors

Rich – CalsXY

- Left: Number of detected photons (RICH cals) in the X-Y-plane
 - Units are millimeters
- Right: Number of detected photons (RICH cals) in X-Y-plane, grouped by PMT
 - Units are PMT coordinates (0..23)
 - A hole in this plot usually points to missing HV in this PMT
 - A PMT with much lower rate points to wrong HV or wrong theshold setting

Rich – Cals

Sector

- Top Left: Number of detected photons for each PMT ID
 - Not all PMT IDs do exist, so there are some holes.
- Top Right: Number of detected photons for each sector
- Bottom Left: Number of detected photons versus polar angle (Theta)
- Bottom Right: Number of detected photons versus azimuthal angle (Phi)

Rich – RawHits

- Top Left: Number of raw hits of each PMT pixel
 - Vertical stripes are due to PMT IDs that don't exist
 - The ID of each PMT is between 0 and 575, each PMT has 64 pixels
- Top Right: Raw hit multiplicity for the full RICH
- Bottom Left: Time-over-Threshold distribution
 - The main photon peak is expected around 5 ns
 - The much lower peak around 2 ns are noise effects
- Bottom Right: Distribution of leading edge times
 - All photons from the primary reaction are expected around -550 ns, before and after there should be close to no hits.

Rich – Single event && UID 2D

hRichRawUIDVsToT 29.2.2024 21:16:59

hRichCalsColRowEvent 29.2.2024 21:16:59

hRichRawUIDVsLeadingEdge 29.2.2024 21:16:59

Rich – Nof per event && Edge info

10 E

٩°

hRichNofEdges 29.2.2024 21:16:59

0 400 500 600 700 800 900 Not Raws (with Mult) per event

hRichNofEdgeTypes 29.2.2024 21:16:59

Mdc-Main 2024

- Top left: Fired wires per event for each chamber and wire plane
 - Black: all signals, green: after time cuts, yellow: noise
 - Gaps point to missing high voltage on some planes / chambers
- Top middle: Mean time-over-threshold for each chamber and wire plane
 - Noise (yellow) should show low values, well separated from real signals (green)
- Top right: Number of data words for each motherboard (MBO)
 - Cells marked '1' are not existing
 - White spaces should not exist (means MBO failure) (despite one switched off board Aug14: III6 MBO7)
- Bottom left: wire distribution, integral for each chamber
 - should be a smooth distribution over all wires
 - reduced counts/gaps fore single wires point to missing readout DBO/MBO
 - lower distribution of one chamber (line) over all wires (compared to other chambers) point to reduced HV in some layer(s)
- Bottom middle: time-over-threshold for each chamber and wire plane
 - Smooth distribution over time
 - Equal within one MDC plane
- Bottom right: Trend of mean count rate per motherboard (normalized to mean value of the full plane)
 - All lines should be around 1 (0...3) if all motherboards are ok
 - Values at **-3** point to count rates that are lower than normal
 - Short drops are expected, especially in planes 0 & 1
 - Longer drops point to non-working motherboards \rightarrow try to recover this one
 - Values >+3 (means 3 times normal count rate) point to noisy motherboards

Mdc-Main – possible Errors (how it should not be)

- Top left: Fired wires per event for each chamber and wire plane
 - spike in III3 points to noisy channels (see Top,Bottom right plots)
- Top middle: Mean time-over-threshold for each chamber and wire plane
- Top right: Number of data words for each motherboard (MBO)
 - noisy motherboard: III3 MBO10
- Bottom left: wire distribution, integral for each chamber
- Bottom middle: time-over-threshold for each chamber and wire plane
- Bottom right: Trend of mean count rate per motherboard (normalized to mean value of the full plane)
 - One line around 6 (means 6 times normal count rate) shows noisy motherboard: III3 MBO10 (also visible as deep red bin in Top right plot)

- Top left: Leading and trailing edge time distribution.
 - Both should be similar, but shifted. Time2 (red) must be after time1
 - Both should have a clear peak between 0 and 200
- Top 2nd: Mean calibrated time from all channels
 - Should stay constant, short drops might be due to beam breaks
- Top 3rd: Number of calibration data words
 - Uniform distribution required. White spots point to non-working motherboards (those marked '1' do not exist)
 - (despite one switched off board Aug14: III6 MBO7)
- Top right: Number of hits for each daughterboard
 - "horizontal" (same within one plane) white spots are non-existing channels \rightarrow OK
 - "vertical" (not equal within a full plane) white spots are non-working daughter-/mother-boards \rightarrow try to recover the corresponding MBO
 - Red spots correspond to noisy groups of channels
- Bottom: Error and Warning flags
 - None bin points to real errors expert information only. Refer to MDC QA manual

Mdc – Potato 2024

- MDC 'potato' plots (calibrated times)
 - One plot for each chamber (time1 versus time-over-threshold)
 - A blob should be visible in all chambers
 - Must be completely inside the histogram, not cut on the edges
 - Should start around time1 = 0, with correct delays/calibration
 - Should be separated from the floor of noise measurements
 - Ghost peaks separated by 200 ns from the main one are due to spill structure from the accelerator
 - Should be similar for each chamber within one plane

Tof - Main

- Top left: Multiplicity per event in TOF
- Middle top & bottom: Hit distribution over channels of TOF
 - From left and right side of each bar
- Top right: Hit distribution over channels of TOF
- Bottom left: Time distribution of TOF hits
 - Shows a peak at 10 ns and a 30ns tail
- Bottom right: Phi distribution of hits in TOF
 - shows all six sectors. Should be equal in all sectors, but an unequal distribution is observed mostly

Tof - Adc

- Time-over-threshold measurements from TOF
- Top: left and right read-out of each bar
 - A distribution peaked at 50 is expected
 - Entries at low values correspond to noise in the detector
- Bottom left: Calibrated sum of left and right amplitude for each bar
 - A broad distribution with a maximum around 1 is expected
- Bottom right: Estimated position within a rod calculated from known attenuation and both ADC values
 - x: rod number, y: position

Tof - TDC

- Top: TDC measurements in TOF from left and right side.
 - For each side a clear line should be visible
 - Offsets between sectors are due to different cable lengths
 - Outliers correspond to noise
- Bottom left: Sum of TDC measurements from both sides of a bar, after offset correction. Should show a clear band around 10 ns for all channels
- Bottom rigth: Difference of time measurement from both sides a bar. A broad band centered at 0 and a width of +- 1000 is expected (due to length of the bar, changing within one sector)

Tof - Hit

- Top left: Measured times in the TOF
 - Should show a clear peak around 10 ns (time-of-flight of fast particles)
- Top right: 2D hit distribution in TOF
- Bottom: Theta and Phi distribution of hits in TOF
 - Phi distribution shows all six sectors. Should be equal in all sectors, but an unequal distribution is observed mostly

Rpc - Main

- Top left: Raw RPC hit multiplicity per event
- Bottom left: Times measured in Rpc and Tof
 - Should show a clear peak around 11 ns (time-of-flight of fast particles)
- Middle column: Hit distribution on left and right sides for all cells of RPC
 - Six sectors are shown side by side (\rightarrow six peak structure expected)
 - Should be similar in all sectors
- Top right: Hit distribution of RPC, see middle column
- Bottom right: Phi distribution of hits in RPC
 - Six sectors shown side by side
- All distributions should be equal in all sectors

Rpc - RawRpcMult

- Top left: Raw multiplicity in RPC for each event
- Top right: Combined multiplicity in Tof and Rpc for each event
 - Colors correspond to different trigger inputs.
 - Mean multiplicities should match the ones set in the trigger module
- Bottom left: Number of events of a given trigger source
 - Bit 11 corresponds to PT1 used for Pions
- Bottom right: same as top right, but for Rpc only

Rpc - RawSecMult

- Raw multiplicity in RPC for each event for each sector
 - Should be equal in all sectors

Rpc - RawCollCellMult

- Number of hits per RPC cell
 - One plot for each sector
 - Left (1-2) /right (4-5) should show similar values
 - Distribution should be similar in all sectors
 - White entries are dead channels (cell 31 exist only in column 3, cell 1 column 3 is also not existing)
 - Two cells (1/2 in sector 4 and 5/6 in sector 6 are known dead channels)

Rpc - RawCollCellMult2

- Total number of hits per RPC cell
 - Colors correspond to left / right readout of cell
 - Distribution should be similar in all sectors
 - Peaks correspond to noisy channels
 - Both sides of each cell should show similar values

Rpc - RawHitsTrend

- Trend plot of the average signal multiplicity per event in RPC
 - One plot per sector
 - Should be equal on all sectors
 - Should not change over time

Rpc - RawChargeDiff

- Difference between measured charges from both sides of a RPC cell
 - One plot per sector
 - Should show a (wiggly) (due to calibration & efficiency) line around 0
 - Entries at +- 500 correspond to hits measured on one side only, i.e. one of the hits has not been measured. The amount should stay low

Rpc - FeeTrbMb

- Hit distribution in RPC ordered by front-end modules and read-out boards (MBO, TRB)
 - One plot for each sector
 - Distribution should be similar in all sectors

Rpc - FeeDbMb

- Hit distribution in RPC ordered by front-end modules (MBO, DBO)
 - One plot for each sector
 - Distribution should be similar in all sectors

Rpc – FeeTrbChannel Feb24

- Hits in the RPC, ordered by channel on the readout boards.
 - One plot per sector
 - Each sector has four read-out boards, one is used only partly (→ white parts in the plots)
 - Red lines are due to reference time which is contained in the data (four parallel lines in each plot)

Rpc - RpcHit

- Hit distribution in the six sectors of RPC
 - Higher occupancy in the inner part of the detector
 - Peaks point to noise in the detector

Wall - Main

Number of hits in all cells of forward wall

- Three plots corresponding to small, middle and large cells
- Blue columns are non-existing cells (due to geometry)

Time Raw vs cell - time should be around -500 ns Width Raw vs cell - width (ToT) should be around 100 ns

Wall - Trend

- Left column displays data from only small cells. Cells are divided in 4 quarters, and each line corresponds to each quarter.
 - Top left displays multiplicity counts per quarter
 - Bottom left displays trends of mean multiplicities for each quarter
- Right column displays FW cell data divided into three groups, corresponding to the size of the cells: small, medium, large
 - Top right corresponds to multiplicities for each size (red small)
 - Bottom right displays the multiplicity trend

-Color sequence: Red, Blue, Magenta, Green, Orange, Cyan Quarters: I – 1-6;61-66; II – 7-12;67-72; III – 73-78;133-138, IV – 79-84; 139-144; Sizes: Small: 1 – 144; Medium: 144 – 208; Large:208-305

Wall - Hit

- Upper left: Calibrated time of hits
 - Compact distribution, similar for all cells, centered around 24 ns
- Upper right: Calibrated amplitude spectra of all cells
 - Should show a clear maximum
- Lower left: Distribution of hits in forward wall
 - Any asymmetry in the center region can point to possible misaligned beam

Wall - Control

- Upper row: Calibrated time in small, middle and large cells
 - A clear peak should be visible.
 - Additional peaks spaced 200 ns are due to beam structure
- Lower row: Charge of hits for each cell size
 - Peaks at 100 units correspond to proton signal

Wall - ControlLatch

hWallLatchADCSmall 29.2.2024 20:48:6

hWallLatchADCMedium 29.2.2024 20:48:6

Sunts

Wall - Cal(ibrated)

- Left: Calibrated time
 - A clear peak should be visible at \sim 25.
- Lower row: Charge of hits for each cell size
 - Peaks at 100 units correspond to proton signal

ECAL - Main

- Upper row:
 - Emc multiplicity raw (left), Emc multiplicity raw for different sectors (middle) - drop in the multiplicity can indicate the problem with threshold settings
 - sector vs position (right) there should be no empty holes (missing cells)
- Lower row:

- trend of multiplicity in time, similar like in the upper row (left and middle).

- Counts vs sec*200+module (right panel)

ECAL - Cal

- Left plot: Emc Width vs sec*200+module Width is defined as Emc Width = rawTimeTrailingSlow – rawTimeLeadingFast and should be around 500 ns. If very small Tot occur check thresholds.
- Right plot: Emc Fast Leading Time vs sec*200+module (left) leading fast time should be around 500 ns

ECAL - Raw expert

- Upper row:
 - Emc Slow Time vs sec*200+module (left) leading slow time should be around 650 ns
 - Emc Slow ToT vs sec*200+module (right) ToT (Width) should be around 300 ns
- Lower row:
 - Emc Fast Time vs sec*200+module (left) leading fast time should be around 500 ns
 - Emc Fast ToT vs sec*200+module (right) ToT (Width) should be close to 0

Phys - MultCand

Phys - Match

-S0

S1

S2

-S3

-S4

S5

MetaQA

t

12

10

0E , <mark>i</mark> . .

Phys - MultDist

Cand_Mult 16.7.2014 5:15:4

counts

3

0

Cand_Mult_Lep_SUM 16.7.2014 5:15:4

secto

Cand_Mult_SUM 16.7.2014 5:15:4

Cand_Mult_Lep_SUM 16.7.2014 5:15:4

Phys - BetaMomSys0

Beta-vs-momentum plots for each sector

•

- Only tracks in RPC region (Theta 18° - 45°)

Phys - BetaMomSys1

Beta-vs-momentum plots for each sector

•

- Only tracks in TOF region (Theta 45° - 81°)

Phys - Vertex

- Top left: Reconstructed vertex in X-Y from track candidates
- Bottom left & top middle, right: Projection of reconstructed vertex to different axes.
 - X/Y is expected to reach from -5 to 5 mm
 - Z is stretched over 50 mm
- Bottom right: UNKNOWN

Phys - TotMips

- Energy loss of track candidates in MDC chambers
 - One plot for each MDC plane
 - Colors correspond to sectors
 - Plotted is Time-over-threshold which is correlated with energy loss of the particle
- Curves should be similar in all sectors of one plane