2 ******************************************************************************
\r
3 * @file stm32f10x_i2c.h
\r
4 * @author MCD Application Team
\r
6 * @date 11-March-2011
\r
7 * @brief This file contains all the functions prototypes for the I2C firmware
\r
9 ******************************************************************************
\r
12 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
\r
13 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
\r
14 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
\r
15 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
\r
16 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
\r
17 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
\r
19 * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
\r
20 ******************************************************************************
\r
23 /* Define to prevent recursive inclusion -------------------------------------*/
\r
24 #ifndef __STM32F10x_I2C_H
\r
25 #define __STM32F10x_I2C_H
\r
31 /* Includes ------------------------------------------------------------------*/
\r
32 #include "stm32f10x.h"
\r
34 /** @addtogroup STM32F10x_StdPeriph_Driver
\r
42 /** @defgroup I2C_Exported_Types
\r
47 * @brief I2C Init structure definition
\r
52 uint32_t I2C_ClockSpeed; /*!< Specifies the clock frequency.
\r
53 This parameter must be set to a value lower than 400kHz */
\r
55 uint16_t I2C_Mode; /*!< Specifies the I2C mode.
\r
56 This parameter can be a value of @ref I2C_mode */
\r
58 uint16_t I2C_DutyCycle; /*!< Specifies the I2C fast mode duty cycle.
\r
59 This parameter can be a value of @ref I2C_duty_cycle_in_fast_mode */
\r
61 uint16_t I2C_OwnAddress1; /*!< Specifies the first device own address.
\r
62 This parameter can be a 7-bit or 10-bit address. */
\r
64 uint16_t I2C_Ack; /*!< Enables or disables the acknowledgement.
\r
65 This parameter can be a value of @ref I2C_acknowledgement */
\r
67 uint16_t I2C_AcknowledgedAddress; /*!< Specifies if 7-bit or 10-bit address is acknowledged.
\r
68 This parameter can be a value of @ref I2C_acknowledged_address */
\r
76 /** @defgroup I2C_Exported_Constants
\r
80 #define IS_I2C_ALL_PERIPH(PERIPH) (((PERIPH) == I2C1) || \
\r
82 /** @defgroup I2C_mode
\r
86 #define I2C_Mode_I2C ((uint16_t)0x0000)
\r
87 #define I2C_Mode_SMBusDevice ((uint16_t)0x0002)
\r
88 #define I2C_Mode_SMBusHost ((uint16_t)0x000A)
\r
89 #define IS_I2C_MODE(MODE) (((MODE) == I2C_Mode_I2C) || \
\r
90 ((MODE) == I2C_Mode_SMBusDevice) || \
\r
91 ((MODE) == I2C_Mode_SMBusHost))
\r
96 /** @defgroup I2C_duty_cycle_in_fast_mode
\r
100 #define I2C_DutyCycle_16_9 ((uint16_t)0x4000) /*!< I2C fast mode Tlow/Thigh = 16/9 */
\r
101 #define I2C_DutyCycle_2 ((uint16_t)0xBFFF) /*!< I2C fast mode Tlow/Thigh = 2 */
\r
102 #define IS_I2C_DUTY_CYCLE(CYCLE) (((CYCLE) == I2C_DutyCycle_16_9) || \
\r
103 ((CYCLE) == I2C_DutyCycle_2))
\r
108 /** @defgroup I2C_acknowledgement
\r
112 #define I2C_Ack_Enable ((uint16_t)0x0400)
\r
113 #define I2C_Ack_Disable ((uint16_t)0x0000)
\r
114 #define IS_I2C_ACK_STATE(STATE) (((STATE) == I2C_Ack_Enable) || \
\r
115 ((STATE) == I2C_Ack_Disable))
\r
120 /** @defgroup I2C_transfer_direction
\r
124 #define I2C_Direction_Transmitter ((uint8_t)0x00)
\r
125 #define I2C_Direction_Receiver ((uint8_t)0x01)
\r
126 #define IS_I2C_DIRECTION(DIRECTION) (((DIRECTION) == I2C_Direction_Transmitter) || \
\r
127 ((DIRECTION) == I2C_Direction_Receiver))
\r
132 /** @defgroup I2C_acknowledged_address
\r
136 #define I2C_AcknowledgedAddress_7bit ((uint16_t)0x4000)
\r
137 #define I2C_AcknowledgedAddress_10bit ((uint16_t)0xC000)
\r
138 #define IS_I2C_ACKNOWLEDGE_ADDRESS(ADDRESS) (((ADDRESS) == I2C_AcknowledgedAddress_7bit) || \
\r
139 ((ADDRESS) == I2C_AcknowledgedAddress_10bit))
\r
144 /** @defgroup I2C_registers
\r
148 #define I2C_Register_CR1 ((uint8_t)0x00)
\r
149 #define I2C_Register_CR2 ((uint8_t)0x04)
\r
150 #define I2C_Register_OAR1 ((uint8_t)0x08)
\r
151 #define I2C_Register_OAR2 ((uint8_t)0x0C)
\r
152 #define I2C_Register_DR ((uint8_t)0x10)
\r
153 #define I2C_Register_SR1 ((uint8_t)0x14)
\r
154 #define I2C_Register_SR2 ((uint8_t)0x18)
\r
155 #define I2C_Register_CCR ((uint8_t)0x1C)
\r
156 #define I2C_Register_TRISE ((uint8_t)0x20)
\r
157 #define IS_I2C_REGISTER(REGISTER) (((REGISTER) == I2C_Register_CR1) || \
\r
158 ((REGISTER) == I2C_Register_CR2) || \
\r
159 ((REGISTER) == I2C_Register_OAR1) || \
\r
160 ((REGISTER) == I2C_Register_OAR2) || \
\r
161 ((REGISTER) == I2C_Register_DR) || \
\r
162 ((REGISTER) == I2C_Register_SR1) || \
\r
163 ((REGISTER) == I2C_Register_SR2) || \
\r
164 ((REGISTER) == I2C_Register_CCR) || \
\r
165 ((REGISTER) == I2C_Register_TRISE))
\r
170 /** @defgroup I2C_SMBus_alert_pin_level
\r
174 #define I2C_SMBusAlert_Low ((uint16_t)0x2000)
\r
175 #define I2C_SMBusAlert_High ((uint16_t)0xDFFF)
\r
176 #define IS_I2C_SMBUS_ALERT(ALERT) (((ALERT) == I2C_SMBusAlert_Low) || \
\r
177 ((ALERT) == I2C_SMBusAlert_High))
\r
182 /** @defgroup I2C_PEC_position
\r
186 #define I2C_PECPosition_Next ((uint16_t)0x0800)
\r
187 #define I2C_PECPosition_Current ((uint16_t)0xF7FF)
\r
188 #define IS_I2C_PEC_POSITION(POSITION) (((POSITION) == I2C_PECPosition_Next) || \
\r
189 ((POSITION) == I2C_PECPosition_Current))
\r
194 /** @defgroup I2C_NCAK_position
\r
198 #define I2C_NACKPosition_Next ((uint16_t)0x0800)
\r
199 #define I2C_NACKPosition_Current ((uint16_t)0xF7FF)
\r
200 #define IS_I2C_NACK_POSITION(POSITION) (((POSITION) == I2C_NACKPosition_Next) || \
\r
201 ((POSITION) == I2C_NACKPosition_Current))
\r
206 /** @defgroup I2C_interrupts_definition
\r
210 #define I2C_IT_BUF ((uint16_t)0x0400)
\r
211 #define I2C_IT_EVT ((uint16_t)0x0200)
\r
212 #define I2C_IT_ERR ((uint16_t)0x0100)
\r
213 #define IS_I2C_CONFIG_IT(IT) ((((IT) & (uint16_t)0xF8FF) == 0x00) && ((IT) != 0x00))
\r
218 /** @defgroup I2C_interrupts_definition
\r
222 #define I2C_IT_SMBALERT ((uint32_t)0x01008000)
\r
223 #define I2C_IT_TIMEOUT ((uint32_t)0x01004000)
\r
224 #define I2C_IT_PECERR ((uint32_t)0x01001000)
\r
225 #define I2C_IT_OVR ((uint32_t)0x01000800)
\r
226 #define I2C_IT_AF ((uint32_t)0x01000400)
\r
227 #define I2C_IT_ARLO ((uint32_t)0x01000200)
\r
228 #define I2C_IT_BERR ((uint32_t)0x01000100)
\r
229 #define I2C_IT_TXE ((uint32_t)0x06000080)
\r
230 #define I2C_IT_RXNE ((uint32_t)0x06000040)
\r
231 #define I2C_IT_STOPF ((uint32_t)0x02000010)
\r
232 #define I2C_IT_ADD10 ((uint32_t)0x02000008)
\r
233 #define I2C_IT_BTF ((uint32_t)0x02000004)
\r
234 #define I2C_IT_ADDR ((uint32_t)0x02000002)
\r
235 #define I2C_IT_SB ((uint32_t)0x02000001)
\r
237 #define IS_I2C_CLEAR_IT(IT) ((((IT) & (uint16_t)0x20FF) == 0x00) && ((IT) != (uint16_t)0x00))
\r
239 #define IS_I2C_GET_IT(IT) (((IT) == I2C_IT_SMBALERT) || ((IT) == I2C_IT_TIMEOUT) || \
\r
240 ((IT) == I2C_IT_PECERR) || ((IT) == I2C_IT_OVR) || \
\r
241 ((IT) == I2C_IT_AF) || ((IT) == I2C_IT_ARLO) || \
\r
242 ((IT) == I2C_IT_BERR) || ((IT) == I2C_IT_TXE) || \
\r
243 ((IT) == I2C_IT_RXNE) || ((IT) == I2C_IT_STOPF) || \
\r
244 ((IT) == I2C_IT_ADD10) || ((IT) == I2C_IT_BTF) || \
\r
245 ((IT) == I2C_IT_ADDR) || ((IT) == I2C_IT_SB))
\r
250 /** @defgroup I2C_flags_definition
\r
255 * @brief SR2 register flags
\r
258 #define I2C_FLAG_DUALF ((uint32_t)0x00800000)
\r
259 #define I2C_FLAG_SMBHOST ((uint32_t)0x00400000)
\r
260 #define I2C_FLAG_SMBDEFAULT ((uint32_t)0x00200000)
\r
261 #define I2C_FLAG_GENCALL ((uint32_t)0x00100000)
\r
262 #define I2C_FLAG_TRA ((uint32_t)0x00040000)
\r
263 #define I2C_FLAG_BUSY ((uint32_t)0x00020000)
\r
264 #define I2C_FLAG_MSL ((uint32_t)0x00010000)
\r
267 * @brief SR1 register flags
\r
270 #define I2C_FLAG_SMBALERT ((uint32_t)0x10008000)
\r
271 #define I2C_FLAG_TIMEOUT ((uint32_t)0x10004000)
\r
272 #define I2C_FLAG_PECERR ((uint32_t)0x10001000)
\r
273 #define I2C_FLAG_OVR ((uint32_t)0x10000800)
\r
274 #define I2C_FLAG_AF ((uint32_t)0x10000400)
\r
275 #define I2C_FLAG_ARLO ((uint32_t)0x10000200)
\r
276 #define I2C_FLAG_BERR ((uint32_t)0x10000100)
\r
277 #define I2C_FLAG_TXE ((uint32_t)0x10000080)
\r
278 #define I2C_FLAG_RXNE ((uint32_t)0x10000040)
\r
279 #define I2C_FLAG_STOPF ((uint32_t)0x10000010)
\r
280 #define I2C_FLAG_ADD10 ((uint32_t)0x10000008)
\r
281 #define I2C_FLAG_BTF ((uint32_t)0x10000004)
\r
282 #define I2C_FLAG_ADDR ((uint32_t)0x10000002)
\r
283 #define I2C_FLAG_SB ((uint32_t)0x10000001)
\r
285 #define IS_I2C_CLEAR_FLAG(FLAG) ((((FLAG) & (uint16_t)0x20FF) == 0x00) && ((FLAG) != (uint16_t)0x00))
\r
287 #define IS_I2C_GET_FLAG(FLAG) (((FLAG) == I2C_FLAG_DUALF) || ((FLAG) == I2C_FLAG_SMBHOST) || \
\r
288 ((FLAG) == I2C_FLAG_SMBDEFAULT) || ((FLAG) == I2C_FLAG_GENCALL) || \
\r
289 ((FLAG) == I2C_FLAG_TRA) || ((FLAG) == I2C_FLAG_BUSY) || \
\r
290 ((FLAG) == I2C_FLAG_MSL) || ((FLAG) == I2C_FLAG_SMBALERT) || \
\r
291 ((FLAG) == I2C_FLAG_TIMEOUT) || ((FLAG) == I2C_FLAG_PECERR) || \
\r
292 ((FLAG) == I2C_FLAG_OVR) || ((FLAG) == I2C_FLAG_AF) || \
\r
293 ((FLAG) == I2C_FLAG_ARLO) || ((FLAG) == I2C_FLAG_BERR) || \
\r
294 ((FLAG) == I2C_FLAG_TXE) || ((FLAG) == I2C_FLAG_RXNE) || \
\r
295 ((FLAG) == I2C_FLAG_STOPF) || ((FLAG) == I2C_FLAG_ADD10) || \
\r
296 ((FLAG) == I2C_FLAG_BTF) || ((FLAG) == I2C_FLAG_ADDR) || \
\r
297 ((FLAG) == I2C_FLAG_SB))
\r
302 /** @defgroup I2C_Events
\r
306 /*========================================
\r
308 I2C Master Events (Events grouped in order of communication)
\r
309 ==========================================*/
\r
311 * @brief Communication start
\r
313 * After sending the START condition (I2C_GenerateSTART() function) the master
\r
314 * has to wait for this event. It means that the Start condition has been correctly
\r
315 * released on the I2C bus (the bus is free, no other devices is communicating).
\r
319 #define I2C_EVENT_MASTER_MODE_SELECT ((uint32_t)0x00030001) /* BUSY, MSL and SB flag */
\r
322 * @brief Address Acknowledge
\r
324 * After checking on EV5 (start condition correctly released on the bus), the
\r
325 * master sends the address of the slave(s) with which it will communicate
\r
326 * (I2C_Send7bitAddress() function, it also determines the direction of the communication:
\r
327 * Master transmitter or Receiver). Then the master has to wait that a slave acknowledges
\r
328 * his address. If an acknowledge is sent on the bus, one of the following events will
\r
331 * 1) In case of Master Receiver (7-bit addressing): the I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED
\r
334 * 2) In case of Master Transmitter (7-bit addressing): the I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED
\r
337 * 3) In case of 10-Bit addressing mode, the master (just after generating the START
\r
338 * and checking on EV5) has to send the header of 10-bit addressing mode (I2C_SendData()
\r
339 * function). Then master should wait on EV9. It means that the 10-bit addressing
\r
340 * header has been correctly sent on the bus. Then master should send the second part of
\r
341 * the 10-bit address (LSB) using the function I2C_Send7bitAddress(). Then master
\r
342 * should wait for event EV6.
\r
347 #define I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED ((uint32_t)0x00070082) /* BUSY, MSL, ADDR, TXE and TRA flags */
\r
348 #define I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED ((uint32_t)0x00030002) /* BUSY, MSL and ADDR flags */
\r
350 #define I2C_EVENT_MASTER_MODE_ADDRESS10 ((uint32_t)0x00030008) /* BUSY, MSL and ADD10 flags */
\r
353 * @brief Communication events
\r
355 * If a communication is established (START condition generated and slave address
\r
356 * acknowledged) then the master has to check on one of the following events for
\r
357 * communication procedures:
\r
359 * 1) Master Receiver mode: The master has to wait on the event EV7 then to read
\r
360 * the data received from the slave (I2C_ReceiveData() function).
\r
362 * 2) Master Transmitter mode: The master has to send data (I2C_SendData()
\r
363 * function) then to wait on event EV8 or EV8_2.
\r
364 * These two events are similar:
\r
365 * - EV8 means that the data has been written in the data register and is
\r
366 * being shifted out.
\r
367 * - EV8_2 means that the data has been physically shifted out and output
\r
369 * In most cases, using EV8 is sufficient for the application.
\r
370 * Using EV8_2 leads to a slower communication but ensure more reliable test.
\r
371 * EV8_2 is also more suitable than EV8 for testing on the last data transmission
\r
372 * (before Stop condition generation).
\r
374 * @note In case the user software does not guarantee that this event EV7 is
\r
375 * managed before the current byte end of transfer, then user may check on EV7
\r
376 * and BTF flag at the same time (ie. (I2C_EVENT_MASTER_BYTE_RECEIVED | I2C_FLAG_BTF)).
\r
377 * In this case the communication may be slower.
\r
381 /* Master RECEIVER mode -----------------------------*/
\r
383 #define I2C_EVENT_MASTER_BYTE_RECEIVED ((uint32_t)0x00030040) /* BUSY, MSL and RXNE flags */
\r
385 /* Master TRANSMITTER mode --------------------------*/
\r
387 #define I2C_EVENT_MASTER_BYTE_TRANSMITTING ((uint32_t)0x00070080) /* TRA, BUSY, MSL, TXE flags */
\r
389 #define I2C_EVENT_MASTER_BYTE_TRANSMITTED ((uint32_t)0x00070084) /* TRA, BUSY, MSL, TXE and BTF flags */
\r
392 /*========================================
\r
394 I2C Slave Events (Events grouped in order of communication)
\r
395 ==========================================*/
\r
398 * @brief Communication start events
\r
400 * Wait on one of these events at the start of the communication. It means that
\r
401 * the I2C peripheral detected a Start condition on the bus (generated by master
\r
402 * device) followed by the peripheral address. The peripheral generates an ACK
\r
403 * condition on the bus (if the acknowledge feature is enabled through function
\r
404 * I2C_AcknowledgeConfig()) and the events listed above are set :
\r
406 * 1) In normal case (only one address managed by the slave), when the address
\r
407 * sent by the master matches the own address of the peripheral (configured by
\r
408 * I2C_OwnAddress1 field) the I2C_EVENT_SLAVE_XXX_ADDRESS_MATCHED event is set
\r
409 * (where XXX could be TRANSMITTER or RECEIVER).
\r
411 * 2) In case the address sent by the master matches the second address of the
\r
412 * peripheral (configured by the function I2C_OwnAddress2Config() and enabled
\r
413 * by the function I2C_DualAddressCmd()) the events I2C_EVENT_SLAVE_XXX_SECONDADDRESS_MATCHED
\r
414 * (where XXX could be TRANSMITTER or RECEIVER) are set.
\r
416 * 3) In case the address sent by the master is General Call (address 0x00) and
\r
417 * if the General Call is enabled for the peripheral (using function I2C_GeneralCallCmd())
\r
418 * the following event is set I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED.
\r
422 /* --EV1 (all the events below are variants of EV1) */
\r
423 /* 1) Case of One Single Address managed by the slave */
\r
424 #define I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED ((uint32_t)0x00020002) /* BUSY and ADDR flags */
\r
425 #define I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED ((uint32_t)0x00060082) /* TRA, BUSY, TXE and ADDR flags */
\r
427 /* 2) Case of Dual address managed by the slave */
\r
428 #define I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED ((uint32_t)0x00820000) /* DUALF and BUSY flags */
\r
429 #define I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED ((uint32_t)0x00860080) /* DUALF, TRA, BUSY and TXE flags */
\r
431 /* 3) Case of General Call enabled for the slave */
\r
432 #define I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED ((uint32_t)0x00120000) /* GENCALL and BUSY flags */
\r
435 * @brief Communication events
\r
437 * Wait on one of these events when EV1 has already been checked and:
\r
439 * - Slave RECEIVER mode:
\r
440 * - EV2: When the application is expecting a data byte to be received.
\r
441 * - EV4: When the application is expecting the end of the communication: master
\r
442 * sends a stop condition and data transmission is stopped.
\r
444 * - Slave Transmitter mode:
\r
445 * - EV3: When a byte has been transmitted by the slave and the application is expecting
\r
446 * the end of the byte transmission. The two events I2C_EVENT_SLAVE_BYTE_TRANSMITTED and
\r
447 * I2C_EVENT_SLAVE_BYTE_TRANSMITTING are similar. The second one can optionally be
\r
448 * used when the user software doesn't guarantee the EV3 is managed before the
\r
449 * current byte end of transfer.
\r
450 * - EV3_2: When the master sends a NACK in order to tell slave that data transmission
\r
451 * shall end (before sending the STOP condition). In this case slave has to stop sending
\r
452 * data bytes and expect a Stop condition on the bus.
\r
454 * @note In case the user software does not guarantee that the event EV2 is
\r
455 * managed before the current byte end of transfer, then user may check on EV2
\r
456 * and BTF flag at the same time (ie. (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_BTF)).
\r
457 * In this case the communication may be slower.
\r
461 /* Slave RECEIVER mode --------------------------*/
\r
463 #define I2C_EVENT_SLAVE_BYTE_RECEIVED ((uint32_t)0x00020040) /* BUSY and RXNE flags */
\r
465 #define I2C_EVENT_SLAVE_STOP_DETECTED ((uint32_t)0x00000010) /* STOPF flag */
\r
467 /* Slave TRANSMITTER mode -----------------------*/
\r
469 #define I2C_EVENT_SLAVE_BYTE_TRANSMITTED ((uint32_t)0x00060084) /* TRA, BUSY, TXE and BTF flags */
\r
470 #define I2C_EVENT_SLAVE_BYTE_TRANSMITTING ((uint32_t)0x00060080) /* TRA, BUSY and TXE flags */
\r
472 #define I2C_EVENT_SLAVE_ACK_FAILURE ((uint32_t)0x00000400) /* AF flag */
\r
474 /*=========================== End of Events Description ==========================================*/
\r
476 #define IS_I2C_EVENT(EVENT) (((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_ADDRESS_MATCHED) || \
\r
477 ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_ADDRESS_MATCHED) || \
\r
478 ((EVENT) == I2C_EVENT_SLAVE_TRANSMITTER_SECONDADDRESS_MATCHED) || \
\r
479 ((EVENT) == I2C_EVENT_SLAVE_RECEIVER_SECONDADDRESS_MATCHED) || \
\r
480 ((EVENT) == I2C_EVENT_SLAVE_GENERALCALLADDRESS_MATCHED) || \
\r
481 ((EVENT) == I2C_EVENT_SLAVE_BYTE_RECEIVED) || \
\r
482 ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_DUALF)) || \
\r
483 ((EVENT) == (I2C_EVENT_SLAVE_BYTE_RECEIVED | I2C_FLAG_GENCALL)) || \
\r
484 ((EVENT) == I2C_EVENT_SLAVE_BYTE_TRANSMITTED) || \
\r
485 ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_DUALF)) || \
\r
486 ((EVENT) == (I2C_EVENT_SLAVE_BYTE_TRANSMITTED | I2C_FLAG_GENCALL)) || \
\r
487 ((EVENT) == I2C_EVENT_SLAVE_STOP_DETECTED) || \
\r
488 ((EVENT) == I2C_EVENT_MASTER_MODE_SELECT) || \
\r
489 ((EVENT) == I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) || \
\r
490 ((EVENT) == I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED) || \
\r
491 ((EVENT) == I2C_EVENT_MASTER_BYTE_RECEIVED) || \
\r
492 ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTED) || \
\r
493 ((EVENT) == I2C_EVENT_MASTER_BYTE_TRANSMITTING) || \
\r
494 ((EVENT) == I2C_EVENT_MASTER_MODE_ADDRESS10) || \
\r
495 ((EVENT) == I2C_EVENT_SLAVE_ACK_FAILURE))
\r
500 /** @defgroup I2C_own_address1
\r
504 #define IS_I2C_OWN_ADDRESS1(ADDRESS1) ((ADDRESS1) <= 0x3FF)
\r
509 /** @defgroup I2C_clock_speed
\r
513 #define IS_I2C_CLOCK_SPEED(SPEED) (((SPEED) >= 0x1) && ((SPEED) <= 400000))
\r
522 /** @defgroup I2C_Exported_Macros
\r
530 /** @defgroup I2C_Exported_Functions
\r
534 void I2C_DeInit(I2C_TypeDef* I2Cx);
\r
535 void I2C_Init(I2C_TypeDef* I2Cx, I2C_InitTypeDef* I2C_InitStruct);
\r
536 void I2C_StructInit(I2C_InitTypeDef* I2C_InitStruct);
\r
537 void I2C_Cmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
538 void I2C_DMACmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
539 void I2C_DMALastTransferCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
540 void I2C_GenerateSTART(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
541 void I2C_GenerateSTOP(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
542 void I2C_AcknowledgeConfig(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
543 void I2C_OwnAddress2Config(I2C_TypeDef* I2Cx, uint8_t Address);
\r
544 void I2C_DualAddressCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
545 void I2C_GeneralCallCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
546 void I2C_ITConfig(I2C_TypeDef* I2Cx, uint16_t I2C_IT, FunctionalState NewState);
\r
547 void I2C_SendData(I2C_TypeDef* I2Cx, uint8_t Data);
\r
548 uint8_t I2C_ReceiveData(I2C_TypeDef* I2Cx);
\r
549 void I2C_Send7bitAddress(I2C_TypeDef* I2Cx, uint8_t Address, uint8_t I2C_Direction);
\r
550 uint16_t I2C_ReadRegister(I2C_TypeDef* I2Cx, uint8_t I2C_Register);
\r
551 void I2C_SoftwareResetCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
552 void I2C_NACKPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_NACKPosition);
\r
553 void I2C_SMBusAlertConfig(I2C_TypeDef* I2Cx, uint16_t I2C_SMBusAlert);
\r
554 void I2C_TransmitPEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
555 void I2C_PECPositionConfig(I2C_TypeDef* I2Cx, uint16_t I2C_PECPosition);
\r
556 void I2C_CalculatePEC(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
557 uint8_t I2C_GetPEC(I2C_TypeDef* I2Cx);
\r
558 void I2C_ARPCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
559 void I2C_StretchClockCmd(I2C_TypeDef* I2Cx, FunctionalState NewState);
\r
560 void I2C_FastModeDutyCycleConfig(I2C_TypeDef* I2Cx, uint16_t I2C_DutyCycle);
\r
564 ****************************************************************************************
\r
566 * I2C State Monitoring Functions
\r
568 ****************************************************************************************
\r
569 * This I2C driver provides three different ways for I2C state monitoring
\r
570 * depending on the application requirements and constraints:
\r
573 * 1) Basic state monitoring:
\r
574 * Using I2C_CheckEvent() function:
\r
575 * It compares the status registers (SR1 and SR2) content to a given event
\r
576 * (can be the combination of one or more flags).
\r
577 * It returns SUCCESS if the current status includes the given flags
\r
578 * and returns ERROR if one or more flags are missing in the current status.
\r
580 * - This function is suitable for most applications as well as for startup
\r
581 * activity since the events are fully described in the product reference manual
\r
583 * - It is also suitable for users who need to define their own events.
\r
585 * - If an error occurs (ie. error flags are set besides to the monitored flags),
\r
586 * the I2C_CheckEvent() function may return SUCCESS despite the communication
\r
587 * hold or corrupted real state.
\r
588 * In this case, it is advised to use error interrupts to monitor the error
\r
589 * events and handle them in the interrupt IRQ handler.
\r
592 * For error management, it is advised to use the following functions:
\r
593 * - I2C_ITConfig() to configure and enable the error interrupts (I2C_IT_ERR).
\r
594 * - I2Cx_ER_IRQHandler() which is called when the error interrupt occurs.
\r
595 * Where x is the peripheral instance (I2C1, I2C2 ...)
\r
596 * - I2C_GetFlagStatus() or I2C_GetITStatus() to be called into I2Cx_ER_IRQHandler()
\r
597 * in order to determine which error occurred.
\r
598 * - I2C_ClearFlag() or I2C_ClearITPendingBit() and/or I2C_SoftwareResetCmd()
\r
599 * and/or I2C_GenerateStop() in order to clear the error flag and source,
\r
600 * and return to correct communication status.
\r
603 * 2) Advanced state monitoring:
\r
604 * Using the function I2C_GetLastEvent() which returns the image of both status
\r
605 * registers in a single word (uint32_t) (Status Register 2 value is shifted left
\r
606 * by 16 bits and concatenated to Status Register 1).
\r
608 * - This function is suitable for the same applications above but it allows to
\r
609 * overcome the limitations of I2C_GetFlagStatus() function (see below).
\r
610 * The returned value could be compared to events already defined in the
\r
611 * library (stm32f10x_i2c.h) or to custom values defined by user.
\r
612 * - This function is suitable when multiple flags are monitored at the same time.
\r
613 * - At the opposite of I2C_CheckEvent() function, this function allows user to
\r
614 * choose when an event is accepted (when all events flags are set and no
\r
615 * other flags are set or just when the needed flags are set like
\r
616 * I2C_CheckEvent() function).
\r
618 * - User may need to define his own events.
\r
619 * - Same remark concerning the error management is applicable for this
\r
620 * function if user decides to check only regular communication flags (and
\r
621 * ignores error flags).
\r
624 * 3) Flag-based state monitoring:
\r
625 * Using the function I2C_GetFlagStatus() which simply returns the status of
\r
626 * one single flag (ie. I2C_FLAG_RXNE ...).
\r
628 * - This function could be used for specific applications or in debug phase.
\r
629 * - It is suitable when only one flag checking is needed (most I2C events
\r
630 * are monitored through multiple flags).
\r
632 * - When calling this function, the Status register is accessed. Some flags are
\r
633 * cleared when the status register is accessed. So checking the status
\r
634 * of one Flag, may clear other ones.
\r
635 * - Function may need to be called twice or more in order to monitor one
\r
642 * 1) Basic state monitoring
\r
643 *******************************************************************************
\r
645 ErrorStatus I2C_CheckEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT);
\r
648 * 2) Advanced state monitoring
\r
649 *******************************************************************************
\r
651 uint32_t I2C_GetLastEvent(I2C_TypeDef* I2Cx);
\r
654 * 3) Flag-based state monitoring
\r
655 *******************************************************************************
\r
657 FlagStatus I2C_GetFlagStatus(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
\r
660 *******************************************************************************
\r
663 void I2C_ClearFlag(I2C_TypeDef* I2Cx, uint32_t I2C_FLAG);
\r
664 ITStatus I2C_GetITStatus(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
\r
665 void I2C_ClearITPendingBit(I2C_TypeDef* I2Cx, uint32_t I2C_IT);
\r
671 #endif /*__STM32F10x_I2C_H */
\r
684 /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
\r