2 ******************************************************************************
\r
3 * @file stm32f10x_tim.c
\r
4 * @author MCD Application Team
\r
6 * @date 11-March-2011
\r
7 * @brief This file provides all the TIM firmware functions.
\r
8 ******************************************************************************
\r
11 * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
\r
12 * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
\r
13 * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
\r
14 * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
\r
15 * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
\r
16 * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
\r
18 * <h2><center>© COPYRIGHT 2011 STMicroelectronics</center></h2>
\r
19 ******************************************************************************
\r
22 /* Includes ------------------------------------------------------------------*/
\r
23 #include "stm32f10x_tim.h"
\r
24 #include "stm32f10x_rcc.h"
\r
26 /** @addtogroup STM32F10x_StdPeriph_Driver
\r
31 * @brief TIM driver modules
\r
35 /** @defgroup TIM_Private_TypesDefinitions
\r
43 /** @defgroup TIM_Private_Defines
\r
47 /* ---------------------- TIM registers bit mask ------------------------ */
\r
48 #define SMCR_ETR_Mask ((uint16_t)0x00FF)
\r
49 #define CCMR_Offset ((uint16_t)0x0018)
\r
50 #define CCER_CCE_Set ((uint16_t)0x0001)
\r
51 #define CCER_CCNE_Set ((uint16_t)0x0004)
\r
57 /** @defgroup TIM_Private_Macros
\r
65 /** @defgroup TIM_Private_Variables
\r
73 /** @defgroup TIM_Private_FunctionPrototypes
\r
77 static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
78 uint16_t TIM_ICFilter);
\r
79 static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
80 uint16_t TIM_ICFilter);
\r
81 static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
82 uint16_t TIM_ICFilter);
\r
83 static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
84 uint16_t TIM_ICFilter);
\r
89 /** @defgroup TIM_Private_Macros
\r
97 /** @defgroup TIM_Private_Variables
\r
105 /** @defgroup TIM_Private_FunctionPrototypes
\r
113 /** @defgroup TIM_Private_Functions
\r
118 * @brief Deinitializes the TIMx peripheral registers to their default reset values.
\r
119 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
122 void TIM_DeInit(TIM_TypeDef* TIMx)
\r
124 /* Check the parameters */
\r
125 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
129 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
\r
130 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);
\r
132 else if (TIMx == TIM2)
\r
134 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
\r
135 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
\r
137 else if (TIMx == TIM3)
\r
139 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
\r
140 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
\r
142 else if (TIMx == TIM4)
\r
144 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
\r
145 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
\r
147 else if (TIMx == TIM5)
\r
149 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
\r
150 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
\r
152 else if (TIMx == TIM6)
\r
154 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
\r
155 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
\r
157 else if (TIMx == TIM7)
\r
159 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
\r
160 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
\r
162 else if (TIMx == TIM8)
\r
164 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
\r
165 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);
\r
167 else if (TIMx == TIM9)
\r
169 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
\r
170 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);
\r
172 else if (TIMx == TIM10)
\r
174 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
\r
175 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);
\r
177 else if (TIMx == TIM11)
\r
179 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
\r
180 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);
\r
182 else if (TIMx == TIM12)
\r
184 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
\r
185 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);
\r
187 else if (TIMx == TIM13)
\r
189 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
\r
190 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);
\r
192 else if (TIMx == TIM14)
\r
194 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
\r
195 RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE);
\r
197 else if (TIMx == TIM15)
\r
199 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, ENABLE);
\r
200 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM15, DISABLE);
\r
202 else if (TIMx == TIM16)
\r
204 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, ENABLE);
\r
205 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM16, DISABLE);
\r
211 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, ENABLE);
\r
212 RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM17, DISABLE);
\r
218 * @brief Initializes the TIMx Time Base Unit peripheral according to
\r
219 * the specified parameters in the TIM_TimeBaseInitStruct.
\r
220 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
221 * @param TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef
\r
222 * structure that contains the configuration information for the
\r
223 * specified TIM peripheral.
\r
226 void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
\r
228 uint16_t tmpcr1 = 0;
\r
230 /* Check the parameters */
\r
231 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
232 assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
\r
233 assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
\r
235 tmpcr1 = TIMx->CR1;
\r
237 if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM2) || (TIMx == TIM3)||
\r
238 (TIMx == TIM4) || (TIMx == TIM5))
\r
240 /* Select the Counter Mode */
\r
241 tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
\r
242 tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
\r
245 if((TIMx != TIM6) && (TIMx != TIM7))
\r
247 /* Set the clock division */
\r
248 tmpcr1 &= (uint16_t)(~((uint16_t)TIM_CR1_CKD));
\r
249 tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
\r
252 TIMx->CR1 = tmpcr1;
\r
254 /* Set the Autoreload value */
\r
255 TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
\r
257 /* Set the Prescaler value */
\r
258 TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
\r
260 if ((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)|| (TIMx == TIM16) || (TIMx == TIM17))
\r
262 /* Set the Repetition Counter value */
\r
263 TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
\r
266 /* Generate an update event to reload the Prescaler and the Repetition counter
\r
267 values immediately */
\r
268 TIMx->EGR = TIM_PSCReloadMode_Immediate;
\r
272 * @brief Initializes the TIMx Channel1 according to the specified
\r
273 * parameters in the TIM_OCInitStruct.
\r
274 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
275 * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
\r
276 * that contains the configuration information for the specified TIM peripheral.
\r
279 void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
\r
281 uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
\r
283 /* Check the parameters */
\r
284 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
285 assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
\r
286 assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
\r
287 assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
\r
288 /* Disable the Channel 1: Reset the CC1E Bit */
\r
289 TIMx->CCER &= (uint16_t)(~(uint16_t)TIM_CCER_CC1E);
\r
290 /* Get the TIMx CCER register value */
\r
291 tmpccer = TIMx->CCER;
\r
292 /* Get the TIMx CR2 register value */
\r
293 tmpcr2 = TIMx->CR2;
\r
295 /* Get the TIMx CCMR1 register value */
\r
296 tmpccmrx = TIMx->CCMR1;
\r
298 /* Reset the Output Compare Mode Bits */
\r
299 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC1M));
\r
300 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC1S));
\r
302 /* Select the Output Compare Mode */
\r
303 tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
\r
305 /* Reset the Output Polarity level */
\r
306 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1P));
\r
307 /* Set the Output Compare Polarity */
\r
308 tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
\r
310 /* Set the Output State */
\r
311 tmpccer |= TIM_OCInitStruct->TIM_OutputState;
\r
313 if((TIMx == TIM1) || (TIMx == TIM8)|| (TIMx == TIM15)||
\r
314 (TIMx == TIM16)|| (TIMx == TIM17))
\r
316 assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
\r
317 assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
\r
318 assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
\r
319 assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
\r
321 /* Reset the Output N Polarity level */
\r
322 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NP));
\r
323 /* Set the Output N Polarity */
\r
324 tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
\r
326 /* Reset the Output N State */
\r
327 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC1NE));
\r
328 /* Set the Output N State */
\r
329 tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
\r
331 /* Reset the Output Compare and Output Compare N IDLE State */
\r
332 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1));
\r
333 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS1N));
\r
335 /* Set the Output Idle state */
\r
336 tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
\r
337 /* Set the Output N Idle state */
\r
338 tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
\r
340 /* Write to TIMx CR2 */
\r
341 TIMx->CR2 = tmpcr2;
\r
343 /* Write to TIMx CCMR1 */
\r
344 TIMx->CCMR1 = tmpccmrx;
\r
346 /* Set the Capture Compare Register value */
\r
347 TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
\r
349 /* Write to TIMx CCER */
\r
350 TIMx->CCER = tmpccer;
\r
354 * @brief Initializes the TIMx Channel2 according to the specified
\r
355 * parameters in the TIM_OCInitStruct.
\r
356 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select
\r
357 * the TIM peripheral.
\r
358 * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
\r
359 * that contains the configuration information for the specified TIM peripheral.
\r
362 void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
\r
364 uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
\r
366 /* Check the parameters */
\r
367 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
368 assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
\r
369 assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
\r
370 assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
\r
371 /* Disable the Channel 2: Reset the CC2E Bit */
\r
372 TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC2E));
\r
374 /* Get the TIMx CCER register value */
\r
375 tmpccer = TIMx->CCER;
\r
376 /* Get the TIMx CR2 register value */
\r
377 tmpcr2 = TIMx->CR2;
\r
379 /* Get the TIMx CCMR1 register value */
\r
380 tmpccmrx = TIMx->CCMR1;
\r
382 /* Reset the Output Compare mode and Capture/Compare selection Bits */
\r
383 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_OC2M));
\r
384 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S));
\r
386 /* Select the Output Compare Mode */
\r
387 tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
\r
389 /* Reset the Output Polarity level */
\r
390 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2P));
\r
391 /* Set the Output Compare Polarity */
\r
392 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
\r
394 /* Set the Output State */
\r
395 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
\r
397 if((TIMx == TIM1) || (TIMx == TIM8))
\r
399 assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
\r
400 assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
\r
401 assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
\r
402 assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
\r
404 /* Reset the Output N Polarity level */
\r
405 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NP));
\r
406 /* Set the Output N Polarity */
\r
407 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
\r
409 /* Reset the Output N State */
\r
410 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC2NE));
\r
411 /* Set the Output N State */
\r
412 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
\r
414 /* Reset the Output Compare and Output Compare N IDLE State */
\r
415 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2));
\r
416 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS2N));
\r
418 /* Set the Output Idle state */
\r
419 tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
\r
420 /* Set the Output N Idle state */
\r
421 tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
\r
423 /* Write to TIMx CR2 */
\r
424 TIMx->CR2 = tmpcr2;
\r
426 /* Write to TIMx CCMR1 */
\r
427 TIMx->CCMR1 = tmpccmrx;
\r
429 /* Set the Capture Compare Register value */
\r
430 TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
\r
432 /* Write to TIMx CCER */
\r
433 TIMx->CCER = tmpccer;
\r
437 * @brief Initializes the TIMx Channel3 according to the specified
\r
438 * parameters in the TIM_OCInitStruct.
\r
439 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
440 * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
\r
441 * that contains the configuration information for the specified TIM peripheral.
\r
444 void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
\r
446 uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
\r
448 /* Check the parameters */
\r
449 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
450 assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
\r
451 assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
\r
452 assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
\r
453 /* Disable the Channel 2: Reset the CC2E Bit */
\r
454 TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC3E));
\r
456 /* Get the TIMx CCER register value */
\r
457 tmpccer = TIMx->CCER;
\r
458 /* Get the TIMx CR2 register value */
\r
459 tmpcr2 = TIMx->CR2;
\r
461 /* Get the TIMx CCMR2 register value */
\r
462 tmpccmrx = TIMx->CCMR2;
\r
464 /* Reset the Output Compare mode and Capture/Compare selection Bits */
\r
465 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC3M));
\r
466 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC3S));
\r
467 /* Select the Output Compare Mode */
\r
468 tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
\r
470 /* Reset the Output Polarity level */
\r
471 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3P));
\r
472 /* Set the Output Compare Polarity */
\r
473 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
\r
475 /* Set the Output State */
\r
476 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
\r
478 if((TIMx == TIM1) || (TIMx == TIM8))
\r
480 assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
\r
481 assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
\r
482 assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
\r
483 assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
\r
485 /* Reset the Output N Polarity level */
\r
486 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NP));
\r
487 /* Set the Output N Polarity */
\r
488 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
\r
489 /* Reset the Output N State */
\r
490 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC3NE));
\r
492 /* Set the Output N State */
\r
493 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
\r
494 /* Reset the Output Compare and Output Compare N IDLE State */
\r
495 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3));
\r
496 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS3N));
\r
497 /* Set the Output Idle state */
\r
498 tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
\r
499 /* Set the Output N Idle state */
\r
500 tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
\r
502 /* Write to TIMx CR2 */
\r
503 TIMx->CR2 = tmpcr2;
\r
505 /* Write to TIMx CCMR2 */
\r
506 TIMx->CCMR2 = tmpccmrx;
\r
508 /* Set the Capture Compare Register value */
\r
509 TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
\r
511 /* Write to TIMx CCER */
\r
512 TIMx->CCER = tmpccer;
\r
516 * @brief Initializes the TIMx Channel4 according to the specified
\r
517 * parameters in the TIM_OCInitStruct.
\r
518 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
519 * @param TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure
\r
520 * that contains the configuration information for the specified TIM peripheral.
\r
523 void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
\r
525 uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
\r
527 /* Check the parameters */
\r
528 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
529 assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
\r
530 assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
\r
531 assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));
\r
532 /* Disable the Channel 2: Reset the CC4E Bit */
\r
533 TIMx->CCER &= (uint16_t)(~((uint16_t)TIM_CCER_CC4E));
\r
535 /* Get the TIMx CCER register value */
\r
536 tmpccer = TIMx->CCER;
\r
537 /* Get the TIMx CR2 register value */
\r
538 tmpcr2 = TIMx->CR2;
\r
540 /* Get the TIMx CCMR2 register value */
\r
541 tmpccmrx = TIMx->CCMR2;
\r
543 /* Reset the Output Compare mode and Capture/Compare selection Bits */
\r
544 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_OC4M));
\r
545 tmpccmrx &= (uint16_t)(~((uint16_t)TIM_CCMR2_CC4S));
\r
547 /* Select the Output Compare Mode */
\r
548 tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
\r
550 /* Reset the Output Polarity level */
\r
551 tmpccer &= (uint16_t)(~((uint16_t)TIM_CCER_CC4P));
\r
552 /* Set the Output Compare Polarity */
\r
553 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
\r
555 /* Set the Output State */
\r
556 tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
\r
558 if((TIMx == TIM1) || (TIMx == TIM8))
\r
560 assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
\r
561 /* Reset the Output Compare IDLE State */
\r
562 tmpcr2 &= (uint16_t)(~((uint16_t)TIM_CR2_OIS4));
\r
563 /* Set the Output Idle state */
\r
564 tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
\r
566 /* Write to TIMx CR2 */
\r
567 TIMx->CR2 = tmpcr2;
\r
569 /* Write to TIMx CCMR2 */
\r
570 TIMx->CCMR2 = tmpccmrx;
\r
572 /* Set the Capture Compare Register value */
\r
573 TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
\r
575 /* Write to TIMx CCER */
\r
576 TIMx->CCER = tmpccer;
\r
580 * @brief Initializes the TIM peripheral according to the specified
\r
581 * parameters in the TIM_ICInitStruct.
\r
582 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
583 * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
\r
584 * that contains the configuration information for the specified TIM peripheral.
\r
587 void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
\r
589 /* Check the parameters */
\r
590 assert_param(IS_TIM_CHANNEL(TIM_ICInitStruct->TIM_Channel));
\r
591 assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
\r
592 assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
\r
593 assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
\r
595 if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
\r
596 (TIMx == TIM4) ||(TIMx == TIM5))
\r
598 assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
\r
602 assert_param(IS_TIM_IC_POLARITY_LITE(TIM_ICInitStruct->TIM_ICPolarity));
\r
604 if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
\r
606 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
607 /* TI1 Configuration */
\r
608 TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
\r
609 TIM_ICInitStruct->TIM_ICSelection,
\r
610 TIM_ICInitStruct->TIM_ICFilter);
\r
611 /* Set the Input Capture Prescaler value */
\r
612 TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
614 else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
\r
616 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
617 /* TI2 Configuration */
\r
618 TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
\r
619 TIM_ICInitStruct->TIM_ICSelection,
\r
620 TIM_ICInitStruct->TIM_ICFilter);
\r
621 /* Set the Input Capture Prescaler value */
\r
622 TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
624 else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
\r
626 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
627 /* TI3 Configuration */
\r
628 TI3_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
\r
629 TIM_ICInitStruct->TIM_ICSelection,
\r
630 TIM_ICInitStruct->TIM_ICFilter);
\r
631 /* Set the Input Capture Prescaler value */
\r
632 TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
636 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
637 /* TI4 Configuration */
\r
638 TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
\r
639 TIM_ICInitStruct->TIM_ICSelection,
\r
640 TIM_ICInitStruct->TIM_ICFilter);
\r
641 /* Set the Input Capture Prescaler value */
\r
642 TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
647 * @brief Configures the TIM peripheral according to the specified
\r
648 * parameters in the TIM_ICInitStruct to measure an external PWM signal.
\r
649 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
650 * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure
\r
651 * that contains the configuration information for the specified TIM peripheral.
\r
654 void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
\r
656 uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
\r
657 uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
\r
658 /* Check the parameters */
\r
659 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
660 /* Select the Opposite Input Polarity */
\r
661 if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
\r
663 icoppositepolarity = TIM_ICPolarity_Falling;
\r
667 icoppositepolarity = TIM_ICPolarity_Rising;
\r
669 /* Select the Opposite Input */
\r
670 if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
\r
672 icoppositeselection = TIM_ICSelection_IndirectTI;
\r
676 icoppositeselection = TIM_ICSelection_DirectTI;
\r
678 if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
\r
680 /* TI1 Configuration */
\r
681 TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
\r
682 TIM_ICInitStruct->TIM_ICFilter);
\r
683 /* Set the Input Capture Prescaler value */
\r
684 TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
685 /* TI2 Configuration */
\r
686 TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
\r
687 /* Set the Input Capture Prescaler value */
\r
688 TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
692 /* TI2 Configuration */
\r
693 TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
\r
694 TIM_ICInitStruct->TIM_ICFilter);
\r
695 /* Set the Input Capture Prescaler value */
\r
696 TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
697 /* TI1 Configuration */
\r
698 TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
\r
699 /* Set the Input Capture Prescaler value */
\r
700 TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
\r
705 * @brief Configures the: Break feature, dead time, Lock level, the OSSI,
\r
706 * the OSSR State and the AOE(automatic output enable).
\r
707 * @param TIMx: where x can be 1 or 8 to select the TIM
\r
708 * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
\r
709 * contains the BDTR Register configuration information for the TIM peripheral.
\r
712 void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
\r
714 /* Check the parameters */
\r
715 assert_param(IS_TIM_LIST2_PERIPH(TIMx));
\r
716 assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
\r
717 assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
\r
718 assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
\r
719 assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
\r
720 assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
\r
721 assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));
\r
722 /* Set the Lock level, the Break enable Bit and the Ploarity, the OSSR State,
\r
723 the OSSI State, the dead time value and the Automatic Output Enable Bit */
\r
724 TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
\r
725 TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
\r
726 TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
\r
727 TIM_BDTRInitStruct->TIM_AutomaticOutput;
\r
731 * @brief Fills each TIM_TimeBaseInitStruct member with its default value.
\r
732 * @param TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
\r
733 * structure which will be initialized.
\r
736 void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
\r
738 /* Set the default configuration */
\r
739 TIM_TimeBaseInitStruct->TIM_Period = 0xFFFF;
\r
740 TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
\r
741 TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
\r
742 TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
\r
743 TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
\r
747 * @brief Fills each TIM_OCInitStruct member with its default value.
\r
748 * @param TIM_OCInitStruct : pointer to a TIM_OCInitTypeDef structure which will
\r
752 void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
\r
754 /* Set the default configuration */
\r
755 TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
\r
756 TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
\r
757 TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
\r
758 TIM_OCInitStruct->TIM_Pulse = 0x0000;
\r
759 TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
\r
760 TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
\r
761 TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
\r
762 TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
\r
766 * @brief Fills each TIM_ICInitStruct member with its default value.
\r
767 * @param TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
\r
771 void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
\r
773 /* Set the default configuration */
\r
774 TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
\r
775 TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
\r
776 TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
\r
777 TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
\r
778 TIM_ICInitStruct->TIM_ICFilter = 0x00;
\r
782 * @brief Fills each TIM_BDTRInitStruct member with its default value.
\r
783 * @param TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
\r
784 * will be initialized.
\r
787 void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
\r
789 /* Set the default configuration */
\r
790 TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
\r
791 TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
\r
792 TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
\r
793 TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
\r
794 TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
\r
795 TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
\r
796 TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
\r
800 * @brief Enables or disables the specified TIM peripheral.
\r
801 * @param TIMx: where x can be 1 to 17 to select the TIMx peripheral.
\r
802 * @param NewState: new state of the TIMx peripheral.
\r
803 * This parameter can be: ENABLE or DISABLE.
\r
806 void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
808 /* Check the parameters */
\r
809 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
810 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
812 if (NewState != DISABLE)
\r
814 /* Enable the TIM Counter */
\r
815 TIMx->CR1 |= TIM_CR1_CEN;
\r
819 /* Disable the TIM Counter */
\r
820 TIMx->CR1 &= (uint16_t)(~((uint16_t)TIM_CR1_CEN));
\r
825 * @brief Enables or disables the TIM peripheral Main Outputs.
\r
826 * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral.
\r
827 * @param NewState: new state of the TIM peripheral Main Outputs.
\r
828 * This parameter can be: ENABLE or DISABLE.
\r
831 void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
833 /* Check the parameters */
\r
834 assert_param(IS_TIM_LIST2_PERIPH(TIMx));
\r
835 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
836 if (NewState != DISABLE)
\r
838 /* Enable the TIM Main Output */
\r
839 TIMx->BDTR |= TIM_BDTR_MOE;
\r
843 /* Disable the TIM Main Output */
\r
844 TIMx->BDTR &= (uint16_t)(~((uint16_t)TIM_BDTR_MOE));
\r
849 * @brief Enables or disables the specified TIM interrupts.
\r
850 * @param TIMx: where x can be 1 to 17 to select the TIMx peripheral.
\r
851 * @param TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
\r
852 * This parameter can be any combination of the following values:
\r
853 * @arg TIM_IT_Update: TIM update Interrupt source
\r
854 * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
\r
855 * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
\r
856 * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
\r
857 * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
\r
858 * @arg TIM_IT_COM: TIM Commutation Interrupt source
\r
859 * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
\r
860 * @arg TIM_IT_Break: TIM Break Interrupt source
\r
862 * - TIM6 and TIM7 can only generate an update interrupt.
\r
863 * - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
\r
864 * TIM_IT_CC2 or TIM_IT_Trigger.
\r
865 * - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.
\r
866 * - TIM_IT_Break is used only with TIM1, TIM8 and TIM15.
\r
867 * - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.
\r
868 * @param NewState: new state of the TIM interrupts.
\r
869 * This parameter can be: ENABLE or DISABLE.
\r
872 void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
\r
874 /* Check the parameters */
\r
875 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
876 assert_param(IS_TIM_IT(TIM_IT));
\r
877 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
879 if (NewState != DISABLE)
\r
881 /* Enable the Interrupt sources */
\r
882 TIMx->DIER |= TIM_IT;
\r
886 /* Disable the Interrupt sources */
\r
887 TIMx->DIER &= (uint16_t)~TIM_IT;
\r
892 * @brief Configures the TIMx event to be generate by software.
\r
893 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
894 * @param TIM_EventSource: specifies the event source.
\r
895 * This parameter can be one or more of the following values:
\r
896 * @arg TIM_EventSource_Update: Timer update Event source
\r
897 * @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
\r
898 * @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
\r
899 * @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
\r
900 * @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
\r
901 * @arg TIM_EventSource_COM: Timer COM event source
\r
902 * @arg TIM_EventSource_Trigger: Timer Trigger Event source
\r
903 * @arg TIM_EventSource_Break: Timer Break event source
\r
905 * - TIM6 and TIM7 can only generate an update event.
\r
906 * - TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.
\r
909 void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
\r
911 /* Check the parameters */
\r
912 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
913 assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
\r
915 /* Set the event sources */
\r
916 TIMx->EGR = TIM_EventSource;
\r
920 * @brief Configures the TIMx's DMA interface.
\r
921 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 15, 16 or 17 to select
\r
922 * the TIM peripheral.
\r
923 * @param TIM_DMABase: DMA Base address.
\r
924 * This parameter can be one of the following values:
\r
925 * @arg TIM_DMABase_CR, TIM_DMABase_CR2, TIM_DMABase_SMCR,
\r
926 * TIM_DMABase_DIER, TIM1_DMABase_SR, TIM_DMABase_EGR,
\r
927 * TIM_DMABase_CCMR1, TIM_DMABase_CCMR2, TIM_DMABase_CCER,
\r
928 * TIM_DMABase_CNT, TIM_DMABase_PSC, TIM_DMABase_ARR,
\r
929 * TIM_DMABase_RCR, TIM_DMABase_CCR1, TIM_DMABase_CCR2,
\r
930 * TIM_DMABase_CCR3, TIM_DMABase_CCR4, TIM_DMABase_BDTR,
\r
932 * @param TIM_DMABurstLength: DMA Burst length.
\r
933 * This parameter can be one value between:
\r
934 * TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
\r
937 void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
\r
939 /* Check the parameters */
\r
940 assert_param(IS_TIM_LIST4_PERIPH(TIMx));
\r
941 assert_param(IS_TIM_DMA_BASE(TIM_DMABase));
\r
942 assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
\r
943 /* Set the DMA Base and the DMA Burst Length */
\r
944 TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
\r
948 * @brief Enables or disables the TIMx's DMA Requests.
\r
949 * @param TIMx: where x can be 1, 2, 3, 4, 5, 6, 7, 8, 15, 16 or 17
\r
950 * to select the TIM peripheral.
\r
951 * @param TIM_DMASource: specifies the DMA Request sources.
\r
952 * This parameter can be any combination of the following values:
\r
953 * @arg TIM_DMA_Update: TIM update Interrupt source
\r
954 * @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
\r
955 * @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
\r
956 * @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
\r
957 * @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
\r
958 * @arg TIM_DMA_COM: TIM Commutation DMA source
\r
959 * @arg TIM_DMA_Trigger: TIM Trigger DMA source
\r
960 * @param NewState: new state of the DMA Request sources.
\r
961 * This parameter can be: ENABLE or DISABLE.
\r
964 void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
\r
966 /* Check the parameters */
\r
967 assert_param(IS_TIM_LIST9_PERIPH(TIMx));
\r
968 assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
\r
969 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
971 if (NewState != DISABLE)
\r
973 /* Enable the DMA sources */
\r
974 TIMx->DIER |= TIM_DMASource;
\r
978 /* Disable the DMA sources */
\r
979 TIMx->DIER &= (uint16_t)~TIM_DMASource;
\r
984 * @brief Configures the TIMx internal Clock
\r
985 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15
\r
986 * to select the TIM peripheral.
\r
989 void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
\r
991 /* Check the parameters */
\r
992 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
993 /* Disable slave mode to clock the prescaler directly with the internal clock */
\r
994 TIMx->SMCR &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
\r
998 * @brief Configures the TIMx Internal Trigger as External Clock
\r
999 * @param TIMx: where x can be 1, 2, 3, 4, 5, 9, 12 or 15 to select the TIM peripheral.
\r
1000 * @param TIM_ITRSource: Trigger source.
\r
1001 * This parameter can be one of the following values:
\r
1002 * @param TIM_TS_ITR0: Internal Trigger 0
\r
1003 * @param TIM_TS_ITR1: Internal Trigger 1
\r
1004 * @param TIM_TS_ITR2: Internal Trigger 2
\r
1005 * @param TIM_TS_ITR3: Internal Trigger 3
\r
1008 void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
\r
1010 /* Check the parameters */
\r
1011 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1012 assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
\r
1013 /* Select the Internal Trigger */
\r
1014 TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
\r
1015 /* Select the External clock mode1 */
\r
1016 TIMx->SMCR |= TIM_SlaveMode_External1;
\r
1020 * @brief Configures the TIMx Trigger as External Clock
\r
1021 * @param TIMx: where x can be 1, 2, 3, 4, 5, 9, 12 or 15 to select the TIM peripheral.
\r
1022 * @param TIM_TIxExternalCLKSource: Trigger source.
\r
1023 * This parameter can be one of the following values:
\r
1024 * @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
\r
1025 * @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
\r
1026 * @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
\r
1027 * @param TIM_ICPolarity: specifies the TIx Polarity.
\r
1028 * This parameter can be one of the following values:
\r
1029 * @arg TIM_ICPolarity_Rising
\r
1030 * @arg TIM_ICPolarity_Falling
\r
1031 * @param ICFilter : specifies the filter value.
\r
1032 * This parameter must be a value between 0x0 and 0xF.
\r
1035 void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
\r
1036 uint16_t TIM_ICPolarity, uint16_t ICFilter)
\r
1038 /* Check the parameters */
\r
1039 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1040 assert_param(IS_TIM_TIXCLK_SOURCE(TIM_TIxExternalCLKSource));
\r
1041 assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
\r
1042 assert_param(IS_TIM_IC_FILTER(ICFilter));
\r
1043 /* Configure the Timer Input Clock Source */
\r
1044 if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
\r
1046 TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
\r
1050 TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
\r
1052 /* Select the Trigger source */
\r
1053 TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
\r
1054 /* Select the External clock mode1 */
\r
1055 TIMx->SMCR |= TIM_SlaveMode_External1;
\r
1059 * @brief Configures the External clock Mode1
\r
1060 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1061 * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
\r
1062 * This parameter can be one of the following values:
\r
1063 * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
\r
1064 * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
\r
1065 * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
\r
1066 * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
\r
1067 * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
\r
1068 * This parameter can be one of the following values:
\r
1069 * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
\r
1070 * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
\r
1071 * @param ExtTRGFilter: External Trigger Filter.
\r
1072 * This parameter must be a value between 0x00 and 0x0F
\r
1075 void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
\r
1076 uint16_t ExtTRGFilter)
\r
1078 uint16_t tmpsmcr = 0;
\r
1079 /* Check the parameters */
\r
1080 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1081 assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
\r
1082 assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
\r
1083 assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
\r
1084 /* Configure the ETR Clock source */
\r
1085 TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
\r
1087 /* Get the TIMx SMCR register value */
\r
1088 tmpsmcr = TIMx->SMCR;
\r
1089 /* Reset the SMS Bits */
\r
1090 tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
\r
1091 /* Select the External clock mode1 */
\r
1092 tmpsmcr |= TIM_SlaveMode_External1;
\r
1093 /* Select the Trigger selection : ETRF */
\r
1094 tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
\r
1095 tmpsmcr |= TIM_TS_ETRF;
\r
1096 /* Write to TIMx SMCR */
\r
1097 TIMx->SMCR = tmpsmcr;
\r
1101 * @brief Configures the External clock Mode2
\r
1102 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1103 * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
\r
1104 * This parameter can be one of the following values:
\r
1105 * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
\r
1106 * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
\r
1107 * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
\r
1108 * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
\r
1109 * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
\r
1110 * This parameter can be one of the following values:
\r
1111 * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
\r
1112 * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
\r
1113 * @param ExtTRGFilter: External Trigger Filter.
\r
1114 * This parameter must be a value between 0x00 and 0x0F
\r
1117 void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
\r
1118 uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
\r
1120 /* Check the parameters */
\r
1121 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1122 assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
\r
1123 assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
\r
1124 assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
\r
1125 /* Configure the ETR Clock source */
\r
1126 TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
\r
1127 /* Enable the External clock mode2 */
\r
1128 TIMx->SMCR |= TIM_SMCR_ECE;
\r
1132 * @brief Configures the TIMx External Trigger (ETR).
\r
1133 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1134 * @param TIM_ExtTRGPrescaler: The external Trigger Prescaler.
\r
1135 * This parameter can be one of the following values:
\r
1136 * @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
\r
1137 * @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
\r
1138 * @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
\r
1139 * @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
\r
1140 * @param TIM_ExtTRGPolarity: The external Trigger Polarity.
\r
1141 * This parameter can be one of the following values:
\r
1142 * @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
\r
1143 * @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
\r
1144 * @param ExtTRGFilter: External Trigger Filter.
\r
1145 * This parameter must be a value between 0x00 and 0x0F
\r
1148 void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
\r
1149 uint16_t ExtTRGFilter)
\r
1151 uint16_t tmpsmcr = 0;
\r
1152 /* Check the parameters */
\r
1153 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1154 assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
\r
1155 assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
\r
1156 assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
\r
1157 tmpsmcr = TIMx->SMCR;
\r
1158 /* Reset the ETR Bits */
\r
1159 tmpsmcr &= SMCR_ETR_Mask;
\r
1160 /* Set the Prescaler, the Filter value and the Polarity */
\r
1161 tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
\r
1162 /* Write to TIMx SMCR */
\r
1163 TIMx->SMCR = tmpsmcr;
\r
1167 * @brief Configures the TIMx Prescaler.
\r
1168 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
1169 * @param Prescaler: specifies the Prescaler Register value
\r
1170 * @param TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
\r
1171 * This parameter can be one of the following values:
\r
1172 * @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
\r
1173 * @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediately.
\r
1176 void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
\r
1178 /* Check the parameters */
\r
1179 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
1180 assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
\r
1181 /* Set the Prescaler value */
\r
1182 TIMx->PSC = Prescaler;
\r
1183 /* Set or reset the UG Bit */
\r
1184 TIMx->EGR = TIM_PSCReloadMode;
\r
1188 * @brief Specifies the TIMx Counter Mode to be used.
\r
1189 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1190 * @param TIM_CounterMode: specifies the Counter Mode to be used
\r
1191 * This parameter can be one of the following values:
\r
1192 * @arg TIM_CounterMode_Up: TIM Up Counting Mode
\r
1193 * @arg TIM_CounterMode_Down: TIM Down Counting Mode
\r
1194 * @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
\r
1195 * @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
\r
1196 * @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
\r
1199 void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
\r
1201 uint16_t tmpcr1 = 0;
\r
1202 /* Check the parameters */
\r
1203 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1204 assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
\r
1205 tmpcr1 = TIMx->CR1;
\r
1206 /* Reset the CMS and DIR Bits */
\r
1207 tmpcr1 &= (uint16_t)(~((uint16_t)(TIM_CR1_DIR | TIM_CR1_CMS)));
\r
1208 /* Set the Counter Mode */
\r
1209 tmpcr1 |= TIM_CounterMode;
\r
1210 /* Write to TIMx CR1 register */
\r
1211 TIMx->CR1 = tmpcr1;
\r
1215 * @brief Selects the Input Trigger source
\r
1216 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
1217 * @param TIM_InputTriggerSource: The Input Trigger source.
\r
1218 * This parameter can be one of the following values:
\r
1219 * @arg TIM_TS_ITR0: Internal Trigger 0
\r
1220 * @arg TIM_TS_ITR1: Internal Trigger 1
\r
1221 * @arg TIM_TS_ITR2: Internal Trigger 2
\r
1222 * @arg TIM_TS_ITR3: Internal Trigger 3
\r
1223 * @arg TIM_TS_TI1F_ED: TI1 Edge Detector
\r
1224 * @arg TIM_TS_TI1FP1: Filtered Timer Input 1
\r
1225 * @arg TIM_TS_TI2FP2: Filtered Timer Input 2
\r
1226 * @arg TIM_TS_ETRF: External Trigger input
\r
1229 void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
\r
1231 uint16_t tmpsmcr = 0;
\r
1232 /* Check the parameters */
\r
1233 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1234 assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
\r
1235 /* Get the TIMx SMCR register value */
\r
1236 tmpsmcr = TIMx->SMCR;
\r
1237 /* Reset the TS Bits */
\r
1238 tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_TS));
\r
1239 /* Set the Input Trigger source */
\r
1240 tmpsmcr |= TIM_InputTriggerSource;
\r
1241 /* Write to TIMx SMCR */
\r
1242 TIMx->SMCR = tmpsmcr;
\r
1246 * @brief Configures the TIMx Encoder Interface.
\r
1247 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1248 * @param TIM_EncoderMode: specifies the TIMx Encoder Mode.
\r
1249 * This parameter can be one of the following values:
\r
1250 * @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
\r
1251 * @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
\r
1252 * @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
\r
1253 * on the level of the other input.
\r
1254 * @param TIM_IC1Polarity: specifies the IC1 Polarity
\r
1255 * This parameter can be one of the following values:
\r
1256 * @arg TIM_ICPolarity_Falling: IC Falling edge.
\r
1257 * @arg TIM_ICPolarity_Rising: IC Rising edge.
\r
1258 * @param TIM_IC2Polarity: specifies the IC2 Polarity
\r
1259 * This parameter can be one of the following values:
\r
1260 * @arg TIM_ICPolarity_Falling: IC Falling edge.
\r
1261 * @arg TIM_ICPolarity_Rising: IC Rising edge.
\r
1264 void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
\r
1265 uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
\r
1267 uint16_t tmpsmcr = 0;
\r
1268 uint16_t tmpccmr1 = 0;
\r
1269 uint16_t tmpccer = 0;
\r
1271 /* Check the parameters */
\r
1272 assert_param(IS_TIM_LIST5_PERIPH(TIMx));
\r
1273 assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
\r
1274 assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
\r
1275 assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));
\r
1277 /* Get the TIMx SMCR register value */
\r
1278 tmpsmcr = TIMx->SMCR;
\r
1280 /* Get the TIMx CCMR1 register value */
\r
1281 tmpccmr1 = TIMx->CCMR1;
\r
1283 /* Get the TIMx CCER register value */
\r
1284 tmpccer = TIMx->CCER;
\r
1286 /* Set the encoder Mode */
\r
1287 tmpsmcr &= (uint16_t)(~((uint16_t)TIM_SMCR_SMS));
\r
1288 tmpsmcr |= TIM_EncoderMode;
\r
1290 /* Select the Capture Compare 1 and the Capture Compare 2 as input */
\r
1291 tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & (uint16_t)(~((uint16_t)TIM_CCMR1_CC2S)));
\r
1292 tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
\r
1294 /* Set the TI1 and the TI2 Polarities */
\r
1295 tmpccer &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCER_CC1P)) & ((uint16_t)~((uint16_t)TIM_CCER_CC2P)));
\r
1296 tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
\r
1298 /* Write to TIMx SMCR */
\r
1299 TIMx->SMCR = tmpsmcr;
\r
1300 /* Write to TIMx CCMR1 */
\r
1301 TIMx->CCMR1 = tmpccmr1;
\r
1302 /* Write to TIMx CCER */
\r
1303 TIMx->CCER = tmpccer;
\r
1307 * @brief Forces the TIMx output 1 waveform to active or inactive level.
\r
1308 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
1309 * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
\r
1310 * This parameter can be one of the following values:
\r
1311 * @arg TIM_ForcedAction_Active: Force active level on OC1REF
\r
1312 * @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
\r
1315 void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
\r
1317 uint16_t tmpccmr1 = 0;
\r
1318 /* Check the parameters */
\r
1319 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
1320 assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
\r
1321 tmpccmr1 = TIMx->CCMR1;
\r
1322 /* Reset the OC1M Bits */
\r
1323 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1M);
\r
1324 /* Configure The Forced output Mode */
\r
1325 tmpccmr1 |= TIM_ForcedAction;
\r
1326 /* Write to TIMx CCMR1 register */
\r
1327 TIMx->CCMR1 = tmpccmr1;
\r
1331 * @brief Forces the TIMx output 2 waveform to active or inactive level.
\r
1332 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
1333 * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
\r
1334 * This parameter can be one of the following values:
\r
1335 * @arg TIM_ForcedAction_Active: Force active level on OC2REF
\r
1336 * @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
\r
1339 void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
\r
1341 uint16_t tmpccmr1 = 0;
\r
1342 /* Check the parameters */
\r
1343 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1344 assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
\r
1345 tmpccmr1 = TIMx->CCMR1;
\r
1346 /* Reset the OC2M Bits */
\r
1347 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2M);
\r
1348 /* Configure The Forced output Mode */
\r
1349 tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
\r
1350 /* Write to TIMx CCMR1 register */
\r
1351 TIMx->CCMR1 = tmpccmr1;
\r
1355 * @brief Forces the TIMx output 3 waveform to active or inactive level.
\r
1356 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1357 * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
\r
1358 * This parameter can be one of the following values:
\r
1359 * @arg TIM_ForcedAction_Active: Force active level on OC3REF
\r
1360 * @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
\r
1363 void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
\r
1365 uint16_t tmpccmr2 = 0;
\r
1366 /* Check the parameters */
\r
1367 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1368 assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
\r
1369 tmpccmr2 = TIMx->CCMR2;
\r
1370 /* Reset the OC1M Bits */
\r
1371 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3M);
\r
1372 /* Configure The Forced output Mode */
\r
1373 tmpccmr2 |= TIM_ForcedAction;
\r
1374 /* Write to TIMx CCMR2 register */
\r
1375 TIMx->CCMR2 = tmpccmr2;
\r
1379 * @brief Forces the TIMx output 4 waveform to active or inactive level.
\r
1380 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1381 * @param TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
\r
1382 * This parameter can be one of the following values:
\r
1383 * @arg TIM_ForcedAction_Active: Force active level on OC4REF
\r
1384 * @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
\r
1387 void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
\r
1389 uint16_t tmpccmr2 = 0;
\r
1390 /* Check the parameters */
\r
1391 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1392 assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
\r
1393 tmpccmr2 = TIMx->CCMR2;
\r
1394 /* Reset the OC2M Bits */
\r
1395 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4M);
\r
1396 /* Configure The Forced output Mode */
\r
1397 tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
\r
1398 /* Write to TIMx CCMR2 register */
\r
1399 TIMx->CCMR2 = tmpccmr2;
\r
1403 * @brief Enables or disables TIMx peripheral Preload register on ARR.
\r
1404 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
1405 * @param NewState: new state of the TIMx peripheral Preload register
\r
1406 * This parameter can be: ENABLE or DISABLE.
\r
1409 void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
1411 /* Check the parameters */
\r
1412 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
1413 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
1414 if (NewState != DISABLE)
\r
1416 /* Set the ARR Preload Bit */
\r
1417 TIMx->CR1 |= TIM_CR1_ARPE;
\r
1421 /* Reset the ARR Preload Bit */
\r
1422 TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_ARPE);
\r
1427 * @brief Selects the TIM peripheral Commutation event.
\r
1428 * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIMx peripheral
\r
1429 * @param NewState: new state of the Commutation event.
\r
1430 * This parameter can be: ENABLE or DISABLE.
\r
1433 void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
1435 /* Check the parameters */
\r
1436 assert_param(IS_TIM_LIST2_PERIPH(TIMx));
\r
1437 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
1438 if (NewState != DISABLE)
\r
1440 /* Set the COM Bit */
\r
1441 TIMx->CR2 |= TIM_CR2_CCUS;
\r
1445 /* Reset the COM Bit */
\r
1446 TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCUS);
\r
1451 * @brief Selects the TIMx peripheral Capture Compare DMA source.
\r
1452 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 15, 16 or 17 to select
\r
1453 * the TIM peripheral.
\r
1454 * @param NewState: new state of the Capture Compare DMA source
\r
1455 * This parameter can be: ENABLE or DISABLE.
\r
1458 void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
1460 /* Check the parameters */
\r
1461 assert_param(IS_TIM_LIST4_PERIPH(TIMx));
\r
1462 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
1463 if (NewState != DISABLE)
\r
1465 /* Set the CCDS Bit */
\r
1466 TIMx->CR2 |= TIM_CR2_CCDS;
\r
1470 /* Reset the CCDS Bit */
\r
1471 TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCDS);
\r
1476 * @brief Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
\r
1477 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8 or 15
\r
1478 * to select the TIMx peripheral
\r
1479 * @param NewState: new state of the Capture Compare Preload Control bit
\r
1480 * This parameter can be: ENABLE or DISABLE.
\r
1483 void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
1485 /* Check the parameters */
\r
1486 assert_param(IS_TIM_LIST5_PERIPH(TIMx));
\r
1487 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
1488 if (NewState != DISABLE)
\r
1490 /* Set the CCPC Bit */
\r
1491 TIMx->CR2 |= TIM_CR2_CCPC;
\r
1495 /* Reset the CCPC Bit */
\r
1496 TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_CCPC);
\r
1501 * @brief Enables or disables the TIMx peripheral Preload register on CCR1.
\r
1502 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
1503 * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
\r
1504 * This parameter can be one of the following values:
\r
1505 * @arg TIM_OCPreload_Enable
\r
1506 * @arg TIM_OCPreload_Disable
\r
1509 void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
\r
1511 uint16_t tmpccmr1 = 0;
\r
1512 /* Check the parameters */
\r
1513 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
1514 assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
\r
1515 tmpccmr1 = TIMx->CCMR1;
\r
1516 /* Reset the OC1PE Bit */
\r
1517 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1PE);
\r
1518 /* Enable or Disable the Output Compare Preload feature */
\r
1519 tmpccmr1 |= TIM_OCPreload;
\r
1520 /* Write to TIMx CCMR1 register */
\r
1521 TIMx->CCMR1 = tmpccmr1;
\r
1525 * @brief Enables or disables the TIMx peripheral Preload register on CCR2.
\r
1526 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select
\r
1527 * the TIM peripheral.
\r
1528 * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
\r
1529 * This parameter can be one of the following values:
\r
1530 * @arg TIM_OCPreload_Enable
\r
1531 * @arg TIM_OCPreload_Disable
\r
1534 void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
\r
1536 uint16_t tmpccmr1 = 0;
\r
1537 /* Check the parameters */
\r
1538 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1539 assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
\r
1540 tmpccmr1 = TIMx->CCMR1;
\r
1541 /* Reset the OC2PE Bit */
\r
1542 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2PE);
\r
1543 /* Enable or Disable the Output Compare Preload feature */
\r
1544 tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
\r
1545 /* Write to TIMx CCMR1 register */
\r
1546 TIMx->CCMR1 = tmpccmr1;
\r
1550 * @brief Enables or disables the TIMx peripheral Preload register on CCR3.
\r
1551 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1552 * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
\r
1553 * This parameter can be one of the following values:
\r
1554 * @arg TIM_OCPreload_Enable
\r
1555 * @arg TIM_OCPreload_Disable
\r
1558 void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
\r
1560 uint16_t tmpccmr2 = 0;
\r
1561 /* Check the parameters */
\r
1562 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1563 assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
\r
1564 tmpccmr2 = TIMx->CCMR2;
\r
1565 /* Reset the OC3PE Bit */
\r
1566 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3PE);
\r
1567 /* Enable or Disable the Output Compare Preload feature */
\r
1568 tmpccmr2 |= TIM_OCPreload;
\r
1569 /* Write to TIMx CCMR2 register */
\r
1570 TIMx->CCMR2 = tmpccmr2;
\r
1574 * @brief Enables or disables the TIMx peripheral Preload register on CCR4.
\r
1575 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1576 * @param TIM_OCPreload: new state of the TIMx peripheral Preload register
\r
1577 * This parameter can be one of the following values:
\r
1578 * @arg TIM_OCPreload_Enable
\r
1579 * @arg TIM_OCPreload_Disable
\r
1582 void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
\r
1584 uint16_t tmpccmr2 = 0;
\r
1585 /* Check the parameters */
\r
1586 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1587 assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
\r
1588 tmpccmr2 = TIMx->CCMR2;
\r
1589 /* Reset the OC4PE Bit */
\r
1590 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4PE);
\r
1591 /* Enable or Disable the Output Compare Preload feature */
\r
1592 tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
\r
1593 /* Write to TIMx CCMR2 register */
\r
1594 TIMx->CCMR2 = tmpccmr2;
\r
1598 * @brief Configures the TIMx Output Compare 1 Fast feature.
\r
1599 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
1600 * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
\r
1601 * This parameter can be one of the following values:
\r
1602 * @arg TIM_OCFast_Enable: TIM output compare fast enable
\r
1603 * @arg TIM_OCFast_Disable: TIM output compare fast disable
\r
1606 void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
\r
1608 uint16_t tmpccmr1 = 0;
\r
1609 /* Check the parameters */
\r
1610 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
1611 assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
\r
1612 /* Get the TIMx CCMR1 register value */
\r
1613 tmpccmr1 = TIMx->CCMR1;
\r
1614 /* Reset the OC1FE Bit */
\r
1615 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1FE);
\r
1616 /* Enable or Disable the Output Compare Fast Bit */
\r
1617 tmpccmr1 |= TIM_OCFast;
\r
1618 /* Write to TIMx CCMR1 */
\r
1619 TIMx->CCMR1 = tmpccmr1;
\r
1623 * @brief Configures the TIMx Output Compare 2 Fast feature.
\r
1624 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select
\r
1625 * the TIM peripheral.
\r
1626 * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
\r
1627 * This parameter can be one of the following values:
\r
1628 * @arg TIM_OCFast_Enable: TIM output compare fast enable
\r
1629 * @arg TIM_OCFast_Disable: TIM output compare fast disable
\r
1632 void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
\r
1634 uint16_t tmpccmr1 = 0;
\r
1635 /* Check the parameters */
\r
1636 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1637 assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
\r
1638 /* Get the TIMx CCMR1 register value */
\r
1639 tmpccmr1 = TIMx->CCMR1;
\r
1640 /* Reset the OC2FE Bit */
\r
1641 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2FE);
\r
1642 /* Enable or Disable the Output Compare Fast Bit */
\r
1643 tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
\r
1644 /* Write to TIMx CCMR1 */
\r
1645 TIMx->CCMR1 = tmpccmr1;
\r
1649 * @brief Configures the TIMx Output Compare 3 Fast feature.
\r
1650 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1651 * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
\r
1652 * This parameter can be one of the following values:
\r
1653 * @arg TIM_OCFast_Enable: TIM output compare fast enable
\r
1654 * @arg TIM_OCFast_Disable: TIM output compare fast disable
\r
1657 void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
\r
1659 uint16_t tmpccmr2 = 0;
\r
1660 /* Check the parameters */
\r
1661 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1662 assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
\r
1663 /* Get the TIMx CCMR2 register value */
\r
1664 tmpccmr2 = TIMx->CCMR2;
\r
1665 /* Reset the OC3FE Bit */
\r
1666 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3FE);
\r
1667 /* Enable or Disable the Output Compare Fast Bit */
\r
1668 tmpccmr2 |= TIM_OCFast;
\r
1669 /* Write to TIMx CCMR2 */
\r
1670 TIMx->CCMR2 = tmpccmr2;
\r
1674 * @brief Configures the TIMx Output Compare 4 Fast feature.
\r
1675 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1676 * @param TIM_OCFast: new state of the Output Compare Fast Enable Bit.
\r
1677 * This parameter can be one of the following values:
\r
1678 * @arg TIM_OCFast_Enable: TIM output compare fast enable
\r
1679 * @arg TIM_OCFast_Disable: TIM output compare fast disable
\r
1682 void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
\r
1684 uint16_t tmpccmr2 = 0;
\r
1685 /* Check the parameters */
\r
1686 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1687 assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
\r
1688 /* Get the TIMx CCMR2 register value */
\r
1689 tmpccmr2 = TIMx->CCMR2;
\r
1690 /* Reset the OC4FE Bit */
\r
1691 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4FE);
\r
1692 /* Enable or Disable the Output Compare Fast Bit */
\r
1693 tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
\r
1694 /* Write to TIMx CCMR2 */
\r
1695 TIMx->CCMR2 = tmpccmr2;
\r
1699 * @brief Clears or safeguards the OCREF1 signal on an external event
\r
1700 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1701 * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
\r
1702 * This parameter can be one of the following values:
\r
1703 * @arg TIM_OCClear_Enable: TIM Output clear enable
\r
1704 * @arg TIM_OCClear_Disable: TIM Output clear disable
\r
1707 void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
\r
1709 uint16_t tmpccmr1 = 0;
\r
1710 /* Check the parameters */
\r
1711 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1712 assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
\r
1714 tmpccmr1 = TIMx->CCMR1;
\r
1716 /* Reset the OC1CE Bit */
\r
1717 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC1CE);
\r
1718 /* Enable or Disable the Output Compare Clear Bit */
\r
1719 tmpccmr1 |= TIM_OCClear;
\r
1720 /* Write to TIMx CCMR1 register */
\r
1721 TIMx->CCMR1 = tmpccmr1;
\r
1725 * @brief Clears or safeguards the OCREF2 signal on an external event
\r
1726 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1727 * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
\r
1728 * This parameter can be one of the following values:
\r
1729 * @arg TIM_OCClear_Enable: TIM Output clear enable
\r
1730 * @arg TIM_OCClear_Disable: TIM Output clear disable
\r
1733 void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
\r
1735 uint16_t tmpccmr1 = 0;
\r
1736 /* Check the parameters */
\r
1737 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1738 assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
\r
1739 tmpccmr1 = TIMx->CCMR1;
\r
1740 /* Reset the OC2CE Bit */
\r
1741 tmpccmr1 &= (uint16_t)~((uint16_t)TIM_CCMR1_OC2CE);
\r
1742 /* Enable or Disable the Output Compare Clear Bit */
\r
1743 tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
\r
1744 /* Write to TIMx CCMR1 register */
\r
1745 TIMx->CCMR1 = tmpccmr1;
\r
1749 * @brief Clears or safeguards the OCREF3 signal on an external event
\r
1750 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1751 * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
\r
1752 * This parameter can be one of the following values:
\r
1753 * @arg TIM_OCClear_Enable: TIM Output clear enable
\r
1754 * @arg TIM_OCClear_Disable: TIM Output clear disable
\r
1757 void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
\r
1759 uint16_t tmpccmr2 = 0;
\r
1760 /* Check the parameters */
\r
1761 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1762 assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
\r
1763 tmpccmr2 = TIMx->CCMR2;
\r
1764 /* Reset the OC3CE Bit */
\r
1765 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC3CE);
\r
1766 /* Enable or Disable the Output Compare Clear Bit */
\r
1767 tmpccmr2 |= TIM_OCClear;
\r
1768 /* Write to TIMx CCMR2 register */
\r
1769 TIMx->CCMR2 = tmpccmr2;
\r
1773 * @brief Clears or safeguards the OCREF4 signal on an external event
\r
1774 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1775 * @param TIM_OCClear: new state of the Output Compare Clear Enable Bit.
\r
1776 * This parameter can be one of the following values:
\r
1777 * @arg TIM_OCClear_Enable: TIM Output clear enable
\r
1778 * @arg TIM_OCClear_Disable: TIM Output clear disable
\r
1781 void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
\r
1783 uint16_t tmpccmr2 = 0;
\r
1784 /* Check the parameters */
\r
1785 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1786 assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
\r
1787 tmpccmr2 = TIMx->CCMR2;
\r
1788 /* Reset the OC4CE Bit */
\r
1789 tmpccmr2 &= (uint16_t)~((uint16_t)TIM_CCMR2_OC4CE);
\r
1790 /* Enable or Disable the Output Compare Clear Bit */
\r
1791 tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
\r
1792 /* Write to TIMx CCMR2 register */
\r
1793 TIMx->CCMR2 = tmpccmr2;
\r
1797 * @brief Configures the TIMx channel 1 polarity.
\r
1798 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
1799 * @param TIM_OCPolarity: specifies the OC1 Polarity
\r
1800 * This parameter can be one of the following values:
\r
1801 * @arg TIM_OCPolarity_High: Output Compare active high
\r
1802 * @arg TIM_OCPolarity_Low: Output Compare active low
\r
1805 void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
\r
1807 uint16_t tmpccer = 0;
\r
1808 /* Check the parameters */
\r
1809 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
1810 assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
\r
1811 tmpccer = TIMx->CCER;
\r
1812 /* Set or Reset the CC1P Bit */
\r
1813 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1P);
\r
1814 tmpccer |= TIM_OCPolarity;
\r
1815 /* Write to TIMx CCER register */
\r
1816 TIMx->CCER = tmpccer;
\r
1820 * @brief Configures the TIMx Channel 1N polarity.
\r
1821 * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
\r
1822 * @param TIM_OCNPolarity: specifies the OC1N Polarity
\r
1823 * This parameter can be one of the following values:
\r
1824 * @arg TIM_OCNPolarity_High: Output Compare active high
\r
1825 * @arg TIM_OCNPolarity_Low: Output Compare active low
\r
1828 void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
\r
1830 uint16_t tmpccer = 0;
\r
1831 /* Check the parameters */
\r
1832 assert_param(IS_TIM_LIST2_PERIPH(TIMx));
\r
1833 assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
\r
1835 tmpccer = TIMx->CCER;
\r
1836 /* Set or Reset the CC1NP Bit */
\r
1837 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC1NP);
\r
1838 tmpccer |= TIM_OCNPolarity;
\r
1839 /* Write to TIMx CCER register */
\r
1840 TIMx->CCER = tmpccer;
\r
1844 * @brief Configures the TIMx channel 2 polarity.
\r
1845 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
1846 * @param TIM_OCPolarity: specifies the OC2 Polarity
\r
1847 * This parameter can be one of the following values:
\r
1848 * @arg TIM_OCPolarity_High: Output Compare active high
\r
1849 * @arg TIM_OCPolarity_Low: Output Compare active low
\r
1852 void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
\r
1854 uint16_t tmpccer = 0;
\r
1855 /* Check the parameters */
\r
1856 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
1857 assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
\r
1858 tmpccer = TIMx->CCER;
\r
1859 /* Set or Reset the CC2P Bit */
\r
1860 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2P);
\r
1861 tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
\r
1862 /* Write to TIMx CCER register */
\r
1863 TIMx->CCER = tmpccer;
\r
1867 * @brief Configures the TIMx Channel 2N polarity.
\r
1868 * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
\r
1869 * @param TIM_OCNPolarity: specifies the OC2N Polarity
\r
1870 * This parameter can be one of the following values:
\r
1871 * @arg TIM_OCNPolarity_High: Output Compare active high
\r
1872 * @arg TIM_OCNPolarity_Low: Output Compare active low
\r
1875 void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
\r
1877 uint16_t tmpccer = 0;
\r
1878 /* Check the parameters */
\r
1879 assert_param(IS_TIM_LIST1_PERIPH(TIMx));
\r
1880 assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
\r
1882 tmpccer = TIMx->CCER;
\r
1883 /* Set or Reset the CC2NP Bit */
\r
1884 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC2NP);
\r
1885 tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
\r
1886 /* Write to TIMx CCER register */
\r
1887 TIMx->CCER = tmpccer;
\r
1891 * @brief Configures the TIMx channel 3 polarity.
\r
1892 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1893 * @param TIM_OCPolarity: specifies the OC3 Polarity
\r
1894 * This parameter can be one of the following values:
\r
1895 * @arg TIM_OCPolarity_High: Output Compare active high
\r
1896 * @arg TIM_OCPolarity_Low: Output Compare active low
\r
1899 void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
\r
1901 uint16_t tmpccer = 0;
\r
1902 /* Check the parameters */
\r
1903 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1904 assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
\r
1905 tmpccer = TIMx->CCER;
\r
1906 /* Set or Reset the CC3P Bit */
\r
1907 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3P);
\r
1908 tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
\r
1909 /* Write to TIMx CCER register */
\r
1910 TIMx->CCER = tmpccer;
\r
1914 * @brief Configures the TIMx Channel 3N polarity.
\r
1915 * @param TIMx: where x can be 1 or 8 to select the TIM peripheral.
\r
1916 * @param TIM_OCNPolarity: specifies the OC3N Polarity
\r
1917 * This parameter can be one of the following values:
\r
1918 * @arg TIM_OCNPolarity_High: Output Compare active high
\r
1919 * @arg TIM_OCNPolarity_Low: Output Compare active low
\r
1922 void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
\r
1924 uint16_t tmpccer = 0;
\r
1926 /* Check the parameters */
\r
1927 assert_param(IS_TIM_LIST1_PERIPH(TIMx));
\r
1928 assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
\r
1930 tmpccer = TIMx->CCER;
\r
1931 /* Set or Reset the CC3NP Bit */
\r
1932 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC3NP);
\r
1933 tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
\r
1934 /* Write to TIMx CCER register */
\r
1935 TIMx->CCER = tmpccer;
\r
1939 * @brief Configures the TIMx channel 4 polarity.
\r
1940 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
1941 * @param TIM_OCPolarity: specifies the OC4 Polarity
\r
1942 * This parameter can be one of the following values:
\r
1943 * @arg TIM_OCPolarity_High: Output Compare active high
\r
1944 * @arg TIM_OCPolarity_Low: Output Compare active low
\r
1947 void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
\r
1949 uint16_t tmpccer = 0;
\r
1950 /* Check the parameters */
\r
1951 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
1952 assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
\r
1953 tmpccer = TIMx->CCER;
\r
1954 /* Set or Reset the CC4P Bit */
\r
1955 tmpccer &= (uint16_t)~((uint16_t)TIM_CCER_CC4P);
\r
1956 tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
\r
1957 /* Write to TIMx CCER register */
\r
1958 TIMx->CCER = tmpccer;
\r
1962 * @brief Enables or disables the TIM Capture Compare Channel x.
\r
1963 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
1964 * @param TIM_Channel: specifies the TIM Channel
\r
1965 * This parameter can be one of the following values:
\r
1966 * @arg TIM_Channel_1: TIM Channel 1
\r
1967 * @arg TIM_Channel_2: TIM Channel 2
\r
1968 * @arg TIM_Channel_3: TIM Channel 3
\r
1969 * @arg TIM_Channel_4: TIM Channel 4
\r
1970 * @param TIM_CCx: specifies the TIM Channel CCxE bit new state.
\r
1971 * This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable.
\r
1974 void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
\r
1978 /* Check the parameters */
\r
1979 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
1980 assert_param(IS_TIM_CHANNEL(TIM_Channel));
\r
1981 assert_param(IS_TIM_CCX(TIM_CCx));
\r
1983 tmp = CCER_CCE_Set << TIM_Channel;
\r
1985 /* Reset the CCxE Bit */
\r
1986 TIMx->CCER &= (uint16_t)~ tmp;
\r
1988 /* Set or reset the CCxE Bit */
\r
1989 TIMx->CCER |= (uint16_t)(TIM_CCx << TIM_Channel);
\r
1993 * @brief Enables or disables the TIM Capture Compare Channel xN.
\r
1994 * @param TIMx: where x can be 1, 8, 15, 16 or 17 to select the TIM peripheral.
\r
1995 * @param TIM_Channel: specifies the TIM Channel
\r
1996 * This parameter can be one of the following values:
\r
1997 * @arg TIM_Channel_1: TIM Channel 1
\r
1998 * @arg TIM_Channel_2: TIM Channel 2
\r
1999 * @arg TIM_Channel_3: TIM Channel 3
\r
2000 * @param TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
\r
2001 * This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable.
\r
2004 void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
\r
2008 /* Check the parameters */
\r
2009 assert_param(IS_TIM_LIST2_PERIPH(TIMx));
\r
2010 assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
\r
2011 assert_param(IS_TIM_CCXN(TIM_CCxN));
\r
2013 tmp = CCER_CCNE_Set << TIM_Channel;
\r
2015 /* Reset the CCxNE Bit */
\r
2016 TIMx->CCER &= (uint16_t) ~tmp;
\r
2018 /* Set or reset the CCxNE Bit */
\r
2019 TIMx->CCER |= (uint16_t)(TIM_CCxN << TIM_Channel);
\r
2023 * @brief Selects the TIM Output Compare Mode.
\r
2024 * @note This function disables the selected channel before changing the Output
\r
2026 * User has to enable this channel using TIM_CCxCmd and TIM_CCxNCmd functions.
\r
2027 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
2028 * @param TIM_Channel: specifies the TIM Channel
\r
2029 * This parameter can be one of the following values:
\r
2030 * @arg TIM_Channel_1: TIM Channel 1
\r
2031 * @arg TIM_Channel_2: TIM Channel 2
\r
2032 * @arg TIM_Channel_3: TIM Channel 3
\r
2033 * @arg TIM_Channel_4: TIM Channel 4
\r
2034 * @param TIM_OCMode: specifies the TIM Output Compare Mode.
\r
2035 * This parameter can be one of the following values:
\r
2036 * @arg TIM_OCMode_Timing
\r
2037 * @arg TIM_OCMode_Active
\r
2038 * @arg TIM_OCMode_Toggle
\r
2039 * @arg TIM_OCMode_PWM1
\r
2040 * @arg TIM_OCMode_PWM2
\r
2041 * @arg TIM_ForcedAction_Active
\r
2042 * @arg TIM_ForcedAction_InActive
\r
2045 void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
\r
2048 uint16_t tmp1 = 0;
\r
2050 /* Check the parameters */
\r
2051 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
2052 assert_param(IS_TIM_CHANNEL(TIM_Channel));
\r
2053 assert_param(IS_TIM_OCM(TIM_OCMode));
\r
2055 tmp = (uint32_t) TIMx;
\r
2056 tmp += CCMR_Offset;
\r
2058 tmp1 = CCER_CCE_Set << (uint16_t)TIM_Channel;
\r
2060 /* Disable the Channel: Reset the CCxE Bit */
\r
2061 TIMx->CCER &= (uint16_t) ~tmp1;
\r
2063 if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
\r
2065 tmp += (TIM_Channel>>1);
\r
2067 /* Reset the OCxM bits in the CCMRx register */
\r
2068 *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC1M);
\r
2070 /* Configure the OCxM bits in the CCMRx register */
\r
2071 *(__IO uint32_t *) tmp |= TIM_OCMode;
\r
2075 tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;
\r
2077 /* Reset the OCxM bits in the CCMRx register */
\r
2078 *(__IO uint32_t *) tmp &= (uint32_t)~((uint32_t)TIM_CCMR1_OC2M);
\r
2080 /* Configure the OCxM bits in the CCMRx register */
\r
2081 *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
\r
2086 * @brief Enables or Disables the TIMx Update event.
\r
2087 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2088 * @param NewState: new state of the TIMx UDIS bit
\r
2089 * This parameter can be: ENABLE or DISABLE.
\r
2092 void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
2094 /* Check the parameters */
\r
2095 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2096 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
2097 if (NewState != DISABLE)
\r
2099 /* Set the Update Disable Bit */
\r
2100 TIMx->CR1 |= TIM_CR1_UDIS;
\r
2104 /* Reset the Update Disable Bit */
\r
2105 TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_UDIS);
\r
2110 * @brief Configures the TIMx Update Request Interrupt source.
\r
2111 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2112 * @param TIM_UpdateSource: specifies the Update source.
\r
2113 * This parameter can be one of the following values:
\r
2114 * @arg TIM_UpdateSource_Regular: Source of update is the counter overflow/underflow
\r
2115 or the setting of UG bit, or an update generation
\r
2116 through the slave mode controller.
\r
2117 * @arg TIM_UpdateSource_Global: Source of update is counter overflow/underflow.
\r
2120 void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
\r
2122 /* Check the parameters */
\r
2123 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2124 assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
\r
2125 if (TIM_UpdateSource != TIM_UpdateSource_Global)
\r
2127 /* Set the URS Bit */
\r
2128 TIMx->CR1 |= TIM_CR1_URS;
\r
2132 /* Reset the URS Bit */
\r
2133 TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_URS);
\r
2138 * @brief Enables or disables the TIMx's Hall sensor interface.
\r
2139 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2140 * @param NewState: new state of the TIMx Hall sensor interface.
\r
2141 * This parameter can be: ENABLE or DISABLE.
\r
2144 void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
\r
2146 /* Check the parameters */
\r
2147 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2148 assert_param(IS_FUNCTIONAL_STATE(NewState));
\r
2149 if (NewState != DISABLE)
\r
2151 /* Set the TI1S Bit */
\r
2152 TIMx->CR2 |= TIM_CR2_TI1S;
\r
2156 /* Reset the TI1S Bit */
\r
2157 TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_TI1S);
\r
2162 * @brief Selects the TIMx's One Pulse Mode.
\r
2163 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2164 * @param TIM_OPMode: specifies the OPM Mode to be used.
\r
2165 * This parameter can be one of the following values:
\r
2166 * @arg TIM_OPMode_Single
\r
2167 * @arg TIM_OPMode_Repetitive
\r
2170 void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
\r
2172 /* Check the parameters */
\r
2173 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2174 assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
\r
2175 /* Reset the OPM Bit */
\r
2176 TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_OPM);
\r
2177 /* Configure the OPM Mode */
\r
2178 TIMx->CR1 |= TIM_OPMode;
\r
2182 * @brief Selects the TIMx Trigger Output Mode.
\r
2183 * @param TIMx: where x can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2184 * @param TIM_TRGOSource: specifies the Trigger Output source.
\r
2185 * This paramter can be one of the following values:
\r
2188 * @arg TIM_TRGOSource_Reset: The UG bit in the TIM_EGR register is used as the trigger output (TRGO).
\r
2189 * @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output (TRGO).
\r
2190 * @arg TIM_TRGOSource_Update: The update event is selected as the trigger output (TRGO).
\r
2192 * - For all TIMx except TIM6 and TIM7
\r
2193 * @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
\r
2194 * is to be set, as soon as a capture or compare match occurs (TRGO).
\r
2195 * @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output (TRGO).
\r
2196 * @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output (TRGO).
\r
2197 * @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output (TRGO).
\r
2198 * @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output (TRGO).
\r
2202 void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
\r
2204 /* Check the parameters */
\r
2205 assert_param(IS_TIM_LIST7_PERIPH(TIMx));
\r
2206 assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
\r
2207 /* Reset the MMS Bits */
\r
2208 TIMx->CR2 &= (uint16_t)~((uint16_t)TIM_CR2_MMS);
\r
2209 /* Select the TRGO source */
\r
2210 TIMx->CR2 |= TIM_TRGOSource;
\r
2214 * @brief Selects the TIMx Slave Mode.
\r
2215 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2216 * @param TIM_SlaveMode: specifies the Timer Slave Mode.
\r
2217 * This parameter can be one of the following values:
\r
2218 * @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal (TRGI) re-initializes
\r
2219 * the counter and triggers an update of the registers.
\r
2220 * @arg TIM_SlaveMode_Gated: The counter clock is enabled when the trigger signal (TRGI) is high.
\r
2221 * @arg TIM_SlaveMode_Trigger: The counter starts at a rising edge of the trigger TRGI.
\r
2222 * @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter.
\r
2225 void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
\r
2227 /* Check the parameters */
\r
2228 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2229 assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
\r
2230 /* Reset the SMS Bits */
\r
2231 TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_SMS);
\r
2232 /* Select the Slave Mode */
\r
2233 TIMx->SMCR |= TIM_SlaveMode;
\r
2237 * @brief Sets or Resets the TIMx Master/Slave Mode.
\r
2238 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2239 * @param TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
\r
2240 * This parameter can be one of the following values:
\r
2241 * @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
\r
2242 * and its slaves (through TRGO).
\r
2243 * @arg TIM_MasterSlaveMode_Disable: No action
\r
2246 void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
\r
2248 /* Check the parameters */
\r
2249 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2250 assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
\r
2251 /* Reset the MSM Bit */
\r
2252 TIMx->SMCR &= (uint16_t)~((uint16_t)TIM_SMCR_MSM);
\r
2254 /* Set or Reset the MSM Bit */
\r
2255 TIMx->SMCR |= TIM_MasterSlaveMode;
\r
2259 * @brief Sets the TIMx Counter Register value
\r
2260 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2261 * @param Counter: specifies the Counter register new value.
\r
2264 void TIM_SetCounter(TIM_TypeDef* TIMx, uint16_t Counter)
\r
2266 /* Check the parameters */
\r
2267 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2268 /* Set the Counter Register value */
\r
2269 TIMx->CNT = Counter;
\r
2273 * @brief Sets the TIMx Autoreload Register value
\r
2274 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2275 * @param Autoreload: specifies the Autoreload register new value.
\r
2278 void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint16_t Autoreload)
\r
2280 /* Check the parameters */
\r
2281 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2282 /* Set the Autoreload Register value */
\r
2283 TIMx->ARR = Autoreload;
\r
2287 * @brief Sets the TIMx Capture Compare1 Register value
\r
2288 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
2289 * @param Compare1: specifies the Capture Compare1 register new value.
\r
2292 void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1)
\r
2294 /* Check the parameters */
\r
2295 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
2296 /* Set the Capture Compare1 Register value */
\r
2297 TIMx->CCR1 = Compare1;
\r
2301 * @brief Sets the TIMx Capture Compare2 Register value
\r
2302 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2303 * @param Compare2: specifies the Capture Compare2 register new value.
\r
2306 void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2)
\r
2308 /* Check the parameters */
\r
2309 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2310 /* Set the Capture Compare2 Register value */
\r
2311 TIMx->CCR2 = Compare2;
\r
2315 * @brief Sets the TIMx Capture Compare3 Register value
\r
2316 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2317 * @param Compare3: specifies the Capture Compare3 register new value.
\r
2320 void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3)
\r
2322 /* Check the parameters */
\r
2323 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2324 /* Set the Capture Compare3 Register value */
\r
2325 TIMx->CCR3 = Compare3;
\r
2329 * @brief Sets the TIMx Capture Compare4 Register value
\r
2330 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2331 * @param Compare4: specifies the Capture Compare4 register new value.
\r
2334 void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4)
\r
2336 /* Check the parameters */
\r
2337 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2338 /* Set the Capture Compare4 Register value */
\r
2339 TIMx->CCR4 = Compare4;
\r
2343 * @brief Sets the TIMx Input Capture 1 prescaler.
\r
2344 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
2345 * @param TIM_ICPSC: specifies the Input Capture1 prescaler new value.
\r
2346 * This parameter can be one of the following values:
\r
2347 * @arg TIM_ICPSC_DIV1: no prescaler
\r
2348 * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
\r
2349 * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
\r
2350 * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
\r
2353 void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
\r
2355 /* Check the parameters */
\r
2356 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
2357 assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
\r
2358 /* Reset the IC1PSC Bits */
\r
2359 TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC1PSC);
\r
2360 /* Set the IC1PSC value */
\r
2361 TIMx->CCMR1 |= TIM_ICPSC;
\r
2365 * @brief Sets the TIMx Input Capture 2 prescaler.
\r
2366 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2367 * @param TIM_ICPSC: specifies the Input Capture2 prescaler new value.
\r
2368 * This parameter can be one of the following values:
\r
2369 * @arg TIM_ICPSC_DIV1: no prescaler
\r
2370 * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
\r
2371 * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
\r
2372 * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
\r
2375 void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
\r
2377 /* Check the parameters */
\r
2378 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2379 assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
\r
2380 /* Reset the IC2PSC Bits */
\r
2381 TIMx->CCMR1 &= (uint16_t)~((uint16_t)TIM_CCMR1_IC2PSC);
\r
2382 /* Set the IC2PSC value */
\r
2383 TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
\r
2387 * @brief Sets the TIMx Input Capture 3 prescaler.
\r
2388 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2389 * @param TIM_ICPSC: specifies the Input Capture3 prescaler new value.
\r
2390 * This parameter can be one of the following values:
\r
2391 * @arg TIM_ICPSC_DIV1: no prescaler
\r
2392 * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
\r
2393 * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
\r
2394 * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
\r
2397 void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
\r
2399 /* Check the parameters */
\r
2400 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2401 assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
\r
2402 /* Reset the IC3PSC Bits */
\r
2403 TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC3PSC);
\r
2404 /* Set the IC3PSC value */
\r
2405 TIMx->CCMR2 |= TIM_ICPSC;
\r
2409 * @brief Sets the TIMx Input Capture 4 prescaler.
\r
2410 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2411 * @param TIM_ICPSC: specifies the Input Capture4 prescaler new value.
\r
2412 * This parameter can be one of the following values:
\r
2413 * @arg TIM_ICPSC_DIV1: no prescaler
\r
2414 * @arg TIM_ICPSC_DIV2: capture is done once every 2 events
\r
2415 * @arg TIM_ICPSC_DIV4: capture is done once every 4 events
\r
2416 * @arg TIM_ICPSC_DIV8: capture is done once every 8 events
\r
2419 void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
\r
2421 /* Check the parameters */
\r
2422 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2423 assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
\r
2424 /* Reset the IC4PSC Bits */
\r
2425 TIMx->CCMR2 &= (uint16_t)~((uint16_t)TIM_CCMR2_IC4PSC);
\r
2426 /* Set the IC4PSC value */
\r
2427 TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
\r
2431 * @brief Sets the TIMx Clock Division value.
\r
2432 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select
\r
2433 * the TIM peripheral.
\r
2434 * @param TIM_CKD: specifies the clock division value.
\r
2435 * This parameter can be one of the following value:
\r
2436 * @arg TIM_CKD_DIV1: TDTS = Tck_tim
\r
2437 * @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
\r
2438 * @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
\r
2441 void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
\r
2443 /* Check the parameters */
\r
2444 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
2445 assert_param(IS_TIM_CKD_DIV(TIM_CKD));
\r
2446 /* Reset the CKD Bits */
\r
2447 TIMx->CR1 &= (uint16_t)~((uint16_t)TIM_CR1_CKD);
\r
2448 /* Set the CKD value */
\r
2449 TIMx->CR1 |= TIM_CKD;
\r
2453 * @brief Gets the TIMx Input Capture 1 value.
\r
2454 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
2455 * @retval Capture Compare 1 Register value.
\r
2457 uint16_t TIM_GetCapture1(TIM_TypeDef* TIMx)
\r
2459 /* Check the parameters */
\r
2460 assert_param(IS_TIM_LIST8_PERIPH(TIMx));
\r
2461 /* Get the Capture 1 Register value */
\r
2462 return TIMx->CCR1;
\r
2466 * @brief Gets the TIMx Input Capture 2 value.
\r
2467 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2468 * @retval Capture Compare 2 Register value.
\r
2470 uint16_t TIM_GetCapture2(TIM_TypeDef* TIMx)
\r
2472 /* Check the parameters */
\r
2473 assert_param(IS_TIM_LIST6_PERIPH(TIMx));
\r
2474 /* Get the Capture 2 Register value */
\r
2475 return TIMx->CCR2;
\r
2479 * @brief Gets the TIMx Input Capture 3 value.
\r
2480 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2481 * @retval Capture Compare 3 Register value.
\r
2483 uint16_t TIM_GetCapture3(TIM_TypeDef* TIMx)
\r
2485 /* Check the parameters */
\r
2486 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2487 /* Get the Capture 3 Register value */
\r
2488 return TIMx->CCR3;
\r
2492 * @brief Gets the TIMx Input Capture 4 value.
\r
2493 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2494 * @retval Capture Compare 4 Register value.
\r
2496 uint16_t TIM_GetCapture4(TIM_TypeDef* TIMx)
\r
2498 /* Check the parameters */
\r
2499 assert_param(IS_TIM_LIST3_PERIPH(TIMx));
\r
2500 /* Get the Capture 4 Register value */
\r
2501 return TIMx->CCR4;
\r
2505 * @brief Gets the TIMx Counter value.
\r
2506 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2507 * @retval Counter Register value.
\r
2509 uint16_t TIM_GetCounter(TIM_TypeDef* TIMx)
\r
2511 /* Check the parameters */
\r
2512 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2513 /* Get the Counter Register value */
\r
2518 * @brief Gets the TIMx Prescaler value.
\r
2519 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2520 * @retval Prescaler Register value.
\r
2522 uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
\r
2524 /* Check the parameters */
\r
2525 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2526 /* Get the Prescaler Register value */
\r
2531 * @brief Checks whether the specified TIM flag is set or not.
\r
2532 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2533 * @param TIM_FLAG: specifies the flag to check.
\r
2534 * This parameter can be one of the following values:
\r
2535 * @arg TIM_FLAG_Update: TIM update Flag
\r
2536 * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
\r
2537 * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
\r
2538 * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
\r
2539 * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
\r
2540 * @arg TIM_FLAG_COM: TIM Commutation Flag
\r
2541 * @arg TIM_FLAG_Trigger: TIM Trigger Flag
\r
2542 * @arg TIM_FLAG_Break: TIM Break Flag
\r
2543 * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag
\r
2544 * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag
\r
2545 * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag
\r
2546 * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag
\r
2548 * - TIM6 and TIM7 can have only one update flag.
\r
2549 * - TIM9, TIM12 and TIM15 can have only TIM_FLAG_Update, TIM_FLAG_CC1,
\r
2550 * TIM_FLAG_CC2 or TIM_FLAG_Trigger.
\r
2551 * - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_FLAG_Update or TIM_FLAG_CC1.
\r
2552 * - TIM_FLAG_Break is used only with TIM1, TIM8 and TIM15.
\r
2553 * - TIM_FLAG_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.
\r
2554 * @retval The new state of TIM_FLAG (SET or RESET).
\r
2556 FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
\r
2558 ITStatus bitstatus = RESET;
\r
2559 /* Check the parameters */
\r
2560 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2561 assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
\r
2563 if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
\r
2569 bitstatus = RESET;
\r
2575 * @brief Clears the TIMx's pending flags.
\r
2576 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2577 * @param TIM_FLAG: specifies the flag bit to clear.
\r
2578 * This parameter can be any combination of the following values:
\r
2579 * @arg TIM_FLAG_Update: TIM update Flag
\r
2580 * @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
\r
2581 * @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
\r
2582 * @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
\r
2583 * @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
\r
2584 * @arg TIM_FLAG_COM: TIM Commutation Flag
\r
2585 * @arg TIM_FLAG_Trigger: TIM Trigger Flag
\r
2586 * @arg TIM_FLAG_Break: TIM Break Flag
\r
2587 * @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 overcapture Flag
\r
2588 * @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 overcapture Flag
\r
2589 * @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 overcapture Flag
\r
2590 * @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 overcapture Flag
\r
2592 * - TIM6 and TIM7 can have only one update flag.
\r
2593 * - TIM9, TIM12 and TIM15 can have only TIM_FLAG_Update, TIM_FLAG_CC1,
\r
2594 * TIM_FLAG_CC2 or TIM_FLAG_Trigger.
\r
2595 * - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_FLAG_Update or TIM_FLAG_CC1.
\r
2596 * - TIM_FLAG_Break is used only with TIM1, TIM8 and TIM15.
\r
2597 * - TIM_FLAG_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.
\r
2600 void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
\r
2602 /* Check the parameters */
\r
2603 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2604 assert_param(IS_TIM_CLEAR_FLAG(TIM_FLAG));
\r
2606 /* Clear the flags */
\r
2607 TIMx->SR = (uint16_t)~TIM_FLAG;
\r
2611 * @brief Checks whether the TIM interrupt has occurred or not.
\r
2612 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2613 * @param TIM_IT: specifies the TIM interrupt source to check.
\r
2614 * This parameter can be one of the following values:
\r
2615 * @arg TIM_IT_Update: TIM update Interrupt source
\r
2616 * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
\r
2617 * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
\r
2618 * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
\r
2619 * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
\r
2620 * @arg TIM_IT_COM: TIM Commutation Interrupt source
\r
2621 * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
\r
2622 * @arg TIM_IT_Break: TIM Break Interrupt source
\r
2624 * - TIM6 and TIM7 can generate only an update interrupt.
\r
2625 * - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
\r
2626 * TIM_IT_CC2 or TIM_IT_Trigger.
\r
2627 * - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.
\r
2628 * - TIM_IT_Break is used only with TIM1, TIM8 and TIM15.
\r
2629 * - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.
\r
2630 * @retval The new state of the TIM_IT(SET or RESET).
\r
2632 ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
\r
2634 ITStatus bitstatus = RESET;
\r
2635 uint16_t itstatus = 0x0, itenable = 0x0;
\r
2636 /* Check the parameters */
\r
2637 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2638 assert_param(IS_TIM_GET_IT(TIM_IT));
\r
2640 itstatus = TIMx->SR & TIM_IT;
\r
2642 itenable = TIMx->DIER & TIM_IT;
\r
2643 if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
\r
2649 bitstatus = RESET;
\r
2655 * @brief Clears the TIMx's interrupt pending bits.
\r
2656 * @param TIMx: where x can be 1 to 17 to select the TIM peripheral.
\r
2657 * @param TIM_IT: specifies the pending bit to clear.
\r
2658 * This parameter can be any combination of the following values:
\r
2659 * @arg TIM_IT_Update: TIM1 update Interrupt source
\r
2660 * @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
\r
2661 * @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
\r
2662 * @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
\r
2663 * @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
\r
2664 * @arg TIM_IT_COM: TIM Commutation Interrupt source
\r
2665 * @arg TIM_IT_Trigger: TIM Trigger Interrupt source
\r
2666 * @arg TIM_IT_Break: TIM Break Interrupt source
\r
2668 * - TIM6 and TIM7 can generate only an update interrupt.
\r
2669 * - TIM9, TIM12 and TIM15 can have only TIM_IT_Update, TIM_IT_CC1,
\r
2670 * TIM_IT_CC2 or TIM_IT_Trigger.
\r
2671 * - TIM10, TIM11, TIM13, TIM14, TIM16 and TIM17 can have TIM_IT_Update or TIM_IT_CC1.
\r
2672 * - TIM_IT_Break is used only with TIM1, TIM8 and TIM15.
\r
2673 * - TIM_IT_COM is used only with TIM1, TIM8, TIM15, TIM16 and TIM17.
\r
2676 void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
\r
2678 /* Check the parameters */
\r
2679 assert_param(IS_TIM_ALL_PERIPH(TIMx));
\r
2680 assert_param(IS_TIM_IT(TIM_IT));
\r
2681 /* Clear the IT pending Bit */
\r
2682 TIMx->SR = (uint16_t)~TIM_IT;
\r
2686 * @brief Configure the TI1 as Input.
\r
2687 * @param TIMx: where x can be 1 to 17 except 6 and 7 to select the TIM peripheral.
\r
2688 * @param TIM_ICPolarity : The Input Polarity.
\r
2689 * This parameter can be one of the following values:
\r
2690 * @arg TIM_ICPolarity_Rising
\r
2691 * @arg TIM_ICPolarity_Falling
\r
2692 * @param TIM_ICSelection: specifies the input to be used.
\r
2693 * This parameter can be one of the following values:
\r
2694 * @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
\r
2695 * @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
\r
2696 * @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
\r
2697 * @param TIM_ICFilter: Specifies the Input Capture Filter.
\r
2698 * This parameter must be a value between 0x00 and 0x0F.
\r
2701 static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
2702 uint16_t TIM_ICFilter)
\r
2704 uint16_t tmpccmr1 = 0, tmpccer = 0;
\r
2705 /* Disable the Channel 1: Reset the CC1E Bit */
\r
2706 TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC1E);
\r
2707 tmpccmr1 = TIMx->CCMR1;
\r
2708 tmpccer = TIMx->CCER;
\r
2709 /* Select the Input and set the filter */
\r
2710 tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC1S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC1F)));
\r
2711 tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
\r
2713 if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
\r
2714 (TIMx == TIM4) ||(TIMx == TIM5))
\r
2716 /* Select the Polarity and set the CC1E Bit */
\r
2717 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC1P));
\r
2718 tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
\r
2722 /* Select the Polarity and set the CC1E Bit */
\r
2723 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC1P | TIM_CCER_CC1NP));
\r
2724 tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
\r
2727 /* Write to TIMx CCMR1 and CCER registers */
\r
2728 TIMx->CCMR1 = tmpccmr1;
\r
2729 TIMx->CCER = tmpccer;
\r
2733 * @brief Configure the TI2 as Input.
\r
2734 * @param TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 12 or 15 to select the TIM peripheral.
\r
2735 * @param TIM_ICPolarity : The Input Polarity.
\r
2736 * This parameter can be one of the following values:
\r
2737 * @arg TIM_ICPolarity_Rising
\r
2738 * @arg TIM_ICPolarity_Falling
\r
2739 * @param TIM_ICSelection: specifies the input to be used.
\r
2740 * This parameter can be one of the following values:
\r
2741 * @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
\r
2742 * @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
\r
2743 * @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
\r
2744 * @param TIM_ICFilter: Specifies the Input Capture Filter.
\r
2745 * This parameter must be a value between 0x00 and 0x0F.
\r
2748 static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
2749 uint16_t TIM_ICFilter)
\r
2751 uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
\r
2752 /* Disable the Channel 2: Reset the CC2E Bit */
\r
2753 TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC2E);
\r
2754 tmpccmr1 = TIMx->CCMR1;
\r
2755 tmpccer = TIMx->CCER;
\r
2756 tmp = (uint16_t)(TIM_ICPolarity << 4);
\r
2757 /* Select the Input and set the filter */
\r
2758 tmpccmr1 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR1_CC2S)) & ((uint16_t)~((uint16_t)TIM_CCMR1_IC2F)));
\r
2759 tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
\r
2760 tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
\r
2762 if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
\r
2763 (TIMx == TIM4) ||(TIMx == TIM5))
\r
2765 /* Select the Polarity and set the CC2E Bit */
\r
2766 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC2P));
\r
2767 tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
\r
2771 /* Select the Polarity and set the CC2E Bit */
\r
2772 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC2P | TIM_CCER_CC2NP));
\r
2773 tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC2E);
\r
2776 /* Write to TIMx CCMR1 and CCER registers */
\r
2777 TIMx->CCMR1 = tmpccmr1 ;
\r
2778 TIMx->CCER = tmpccer;
\r
2782 * @brief Configure the TI3 as Input.
\r
2783 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2784 * @param TIM_ICPolarity : The Input Polarity.
\r
2785 * This parameter can be one of the following values:
\r
2786 * @arg TIM_ICPolarity_Rising
\r
2787 * @arg TIM_ICPolarity_Falling
\r
2788 * @param TIM_ICSelection: specifies the input to be used.
\r
2789 * This parameter can be one of the following values:
\r
2790 * @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
\r
2791 * @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
\r
2792 * @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
\r
2793 * @param TIM_ICFilter: Specifies the Input Capture Filter.
\r
2794 * This parameter must be a value between 0x00 and 0x0F.
\r
2797 static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
2798 uint16_t TIM_ICFilter)
\r
2800 uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
\r
2801 /* Disable the Channel 3: Reset the CC3E Bit */
\r
2802 TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC3E);
\r
2803 tmpccmr2 = TIMx->CCMR2;
\r
2804 tmpccer = TIMx->CCER;
\r
2805 tmp = (uint16_t)(TIM_ICPolarity << 8);
\r
2806 /* Select the Input and set the filter */
\r
2807 tmpccmr2 &= (uint16_t)(((uint16_t)~((uint16_t)TIM_CCMR2_CC3S)) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC3F)));
\r
2808 tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
\r
2810 if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
\r
2811 (TIMx == TIM4) ||(TIMx == TIM5))
\r
2813 /* Select the Polarity and set the CC3E Bit */
\r
2814 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P));
\r
2815 tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
\r
2819 /* Select the Polarity and set the CC3E Bit */
\r
2820 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P | TIM_CCER_CC3NP));
\r
2821 tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC3E);
\r
2824 /* Write to TIMx CCMR2 and CCER registers */
\r
2825 TIMx->CCMR2 = tmpccmr2;
\r
2826 TIMx->CCER = tmpccer;
\r
2830 * @brief Configure the TI4 as Input.
\r
2831 * @param TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
\r
2832 * @param TIM_ICPolarity : The Input Polarity.
\r
2833 * This parameter can be one of the following values:
\r
2834 * @arg TIM_ICPolarity_Rising
\r
2835 * @arg TIM_ICPolarity_Falling
\r
2836 * @param TIM_ICSelection: specifies the input to be used.
\r
2837 * This parameter can be one of the following values:
\r
2838 * @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
\r
2839 * @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
\r
2840 * @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
\r
2841 * @param TIM_ICFilter: Specifies the Input Capture Filter.
\r
2842 * This parameter must be a value between 0x00 and 0x0F.
\r
2845 static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
\r
2846 uint16_t TIM_ICFilter)
\r
2848 uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
\r
2850 /* Disable the Channel 4: Reset the CC4E Bit */
\r
2851 TIMx->CCER &= (uint16_t)~((uint16_t)TIM_CCER_CC4E);
\r
2852 tmpccmr2 = TIMx->CCMR2;
\r
2853 tmpccer = TIMx->CCER;
\r
2854 tmp = (uint16_t)(TIM_ICPolarity << 12);
\r
2855 /* Select the Input and set the filter */
\r
2856 tmpccmr2 &= (uint16_t)((uint16_t)(~(uint16_t)TIM_CCMR2_CC4S) & ((uint16_t)~((uint16_t)TIM_CCMR2_IC4F)));
\r
2857 tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
\r
2858 tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
\r
2860 if((TIMx == TIM1) || (TIMx == TIM8) || (TIMx == TIM2) || (TIMx == TIM3) ||
\r
2861 (TIMx == TIM4) ||(TIMx == TIM5))
\r
2863 /* Select the Polarity and set the CC4E Bit */
\r
2864 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC4P));
\r
2865 tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
\r
2869 /* Select the Polarity and set the CC4E Bit */
\r
2870 tmpccer &= (uint16_t)~((uint16_t)(TIM_CCER_CC3P | TIM_CCER_CC4NP));
\r
2871 tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC4E);
\r
2873 /* Write to TIMx CCMR2 and CCER registers */
\r
2874 TIMx->CCMR2 = tmpccmr2;
\r
2875 TIMx->CCER = tmpccer;
\r
2890 /******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
\r