]> jspc29.x-matter.uni-frankfurt.de Git - reports.git/commitdiff
Finaler Report Doering
authorDennis Doering <doering@physik.uni-frankfurt.de>
Thu, 12 Feb 2015 13:20:39 +0000 (14:20 +0100)
committerDennis Doering <doering@physik.uni-frankfurt.de>
Thu, 12 Feb 2015 13:20:39 +0000 (14:20 +0100)
GSI_2015_Doering/Doering-Mi34-GSIbericht2014.pdf
GSI_2015_Doering/Doering-Mi34-GSIbericht2014.ps
GSI_2015_Doering/Doering-Mi34-GSIbericht2014.tex

index 5745239f75a19ccca934e51cebba97616a2a4c13..46c4d3263dadbe9c968585cc52a86b66d761be6a 100644 (file)
Binary files a/GSI_2015_Doering/Doering-Mi34-GSIbericht2014.pdf and b/GSI_2015_Doering/Doering-Mi34-GSIbericht2014.pdf differ
index ac9aba2684345666e1ae15222ab146172ed36661..911f94e4fce208509fa5a7ed0390d944be5498cd 100644 (file)
@@ -1,7 +1,7 @@
 %!PS-Adobe-2.0
 %%Creator: dvips(k) 5.993 Copyright 2013 Radical Eye Software
 %%Title: D:/Dennis Doering/Promotion/radhard/Jahresbericht2013/GSI_2015_Doering/Doering-Mi34-GSIbericht2014.dvi
-%%CreationDate: Mon Feb 09 17:13:57 2015
+%%CreationDate: Thu Feb 12 14:18:32 2015
 %%Pages: 1
 %%PageOrder: Ascend
 %%BoundingBox: 0 0 595 842
@@ -14,7 +14,7 @@
 %+ "C:\Program Files\MiKTeX 2.9\miktex\bin\x64\dvips.exe"
 %+ "D:/Dennis Doering/Promotion/radhard/Jahresbericht2013/GSI_2015_Doering/Doering-Mi34-GSIbericht2014.dvi"
 %DVIPSParameters: dpi=600
-%DVIPSSource:  TeX output 2015.02.09:1713
+%DVIPSSource:  TeX output 2015.02.12:1418
 %%BeginProcSet: tex.pro 0 0
 %!
 /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
@@ -283,7 +283,7 @@ moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X
 %%EndProcSet
 TeXDict begin @defspecial
 
-% DocumentClass: JACoW-GSI-2013.cls
+% DocumentClass: JACoW-GSI-2014.cls
  
 @fedspecial end
 %%BeginFont: EURM10
@@ -1172,6 +1172,11 @@ end readonly def
 dup 12 /beta put
 dup 58 /period put
 dup 61 /slash put
+dup 69 /E put
+dup 79 /O put
+dup 82 /R put
+dup 84 /T put
+dup 87 /W put
 readonly def
 currentdict end
 currentfile eexec
@@ -1349,28 +1354,71 @@ E66A92A61FE13FDE781D393557EB72CEBAD86511035F775FAC39A0479CCD400F
 919823FD01DE12438D960944D1977800FEB49E638C32E5B188B1CA033E0C37EE
 A142F746367888AA119535F0CCAF7EAA461B790EB089D2D6962E28A398439BB7
 9C9943654D7A2D765B46BC0DD1F915327F369162E1BA1BA83110B93F442905E0
-523BFF5E279508A98568CD5CFD18FABBE9D17265A9081E7BF64155A2CE3C0DF7
-88D00671AD65654709589BAD7EA65BBA811387ABA5CA0BC3F66D3D48597A0D1D
-2C268375DF47CCF62166262AE4840AB03BF49BE67A05EF66328EC729F03CA5FF
-AD3937FC053E223303565DC771ACF32E63DFB96D5030E787961D72D02C195C66
-B48E9AF0309DC169CFE8D16E2818DA94693A18F027DEA0D91051800EE6C54285
-AB0594D87D05EB4CB44FFC094DA0072AE7D4BF2F4F9BB812FED256B937BC2574
-8C529F97ABBCD2C98425ED9BF618FC3499F108BA1860FE656019838802CEB756
-AB9A0BC7925B4D7D6875F9DDD79751EE86821363E4A38D1088602DCB1CC7BB56
-4D296D361DAAD382BD31BCE606604A2457D025166BA96066D54842C4B0F5EEDF
-460ED0590758447AEBE426D8E50A1737588EAF63C35C832C97F70AC9A19436EB
-5D4C44A472B38F2749AFE19087E34BEE50DB000C601CC232E0C73FC8F0CE2A07
-C599847100BA524B2012DA0F7649F7FB868AEA07C170D4AEAECC84598275A476
-0220A4F6A59079E4466728B4887F95C35FB9CD4B8FE55A6A3354235C18587DD1
-D5B5010DB458D16C4CD877105BA4DF5CA9C86B089A83222B007D55E364649880
-B00C1211D968AD281D5BEC23ECA3AE12B3ABE742A73A765D43B0E2543B7320DE
-2F49D8AA536A2B9CAC2CBE6B0C870CF1139E3BD7C0F9D83F7B55795E87AA9445
-9E61D3F648E05E80DB9DAD97215154536AABE723ACFF1EE3598216AA8CCAD56A
-58DE3F84A9620F69A1F6C5459528B42223C457EFBAA0AFC3ED876C9C7FE26B47
-CBD1A5B97B1F3A41ED161F48656D7C765FA2663AACA5667ACEF874BE8AAE6D17
-FD0F8FF83E9FAB47B66636FB080BD7594E3CD3C9F8A5D8B369B6017F17579A67
-3C0D684927EC71A7BBD16BB64FAB7C9BC1D5D443FCB6370DDAA6F39ECAC475E0
-8659C0EA95CF336A8051B7C620AFEE2102AD324A4B3B21B5B1F5
+523BFF5E279508A98568CD5CFD18FABBE9D17265A90AFBE22541B28C80755318
+BB1862294F1A9E8FC624FF44D2694184CA17E43E2B7752B48A75DCFC69B0F51A
+46583CBDDEF0D200200811E18B9A1ECB5C7FBBFC1A88E17F1444AD57F0B3F4AD
+E8D0DCEB488DF225D047799EC5765A12BF14D0E86241AB753C32214F6A8B3B92
+4B6F0B443F3A3F94CF0C7669ED9E365EDC2D5A99F18C212AB1A2987CA420946A
+DDFEE44D42B77B7AB51FCADC6C3B6CD90EACD4E374E88B8B0E3C73A808B4D1BF
+60A76C7A1780F130D25C3921E7119A7A7F653546E682A1244FB1BF950B287EEF
+7770CE7E2720A24209B80248745C4BFCA0B6AE7DFAF4E887F0F9A1F64F1B19CA
+35B7EFF8A25621AE3C96F9D308BD7C68223181098FE818085AFC521AC793BD28
+FC51C6FFAF268BDCBFA25AD63B41CB58C2EBF731F5AB808EA4E177D72FADF79B
+6A02316E311CF27A7822F686641D279994723DC8CBEE6A170C0718A349F9EA4E
+953F2E7FF1D704552DEC5AFD8CE2C5F43F86DF749DF2A487EE8859FCDE6649A4
+F372DC3E5AEB02B80489E06699B137B659B68FF7BAE73669D5230108B59AFF83
+50C8787A54BEDFBC780EB01B166A7BEA7201FF3008C05D39ADBA8DD95F19E882
+A64EAB25D94D2B8A0AA630398104F634C73B42DEA54BCEA440B613FEA178E9A6
+AC473EA0ACF3E9F9839098673C72D3B480888E0DA1FA6638A708663C64231757
+9226B4740DE8AE45F57EA389E563E2721AE45FF2D1C727D907F34D9A7F3BFC3A
+F76F0807A3216E659842A7B90F8B218F38295AE7486F2CE294160F65DA1828A6
+A4431D3CB71EE0848F9B891924B2C961746F51E3FDF89ECE5281834C05B829FE
+3CE783D1708C7BC0C25B89E235039114BC8AC8EE7E71074BF205FC88E4B5C007
+A1847FF0BDEFB1A1B3364D345FED3BB7AB625D94740C0AD303DF742DB6DAA58A
+CE3399157D3618125D7868FBE02D88BC830636091B05A3BAA49FCA5C2131B3FD
+E31BCDB8ADDA01B5CA37D475DB1494C4EB168DEB875C4779818D5D9FF288C63D
+A6CCCA7DC557DF7BE79BAE3F6B05EB3F2AEAB0390FED36E578113EF38ECF485D
+EDA5BEAFCAF5DCE799ED20A4E819E9302241ECA857E8131FD84CBDF534815C08
+C31919CD030A7EB88EE3F6B800A21267FF4B3E053AC355D82366FD72EC8826DB
+B281C4D78A6A387A88857B747B73AEF652999D4D3B12A53974FAF57739FEAE09
+74C0080242081C89E6CEAB2EBDE27DF77FCF024351C9C44D3D3E3BA663F8563C
+5461B03FD15526BD93B97E81B5E987E3BD2099FCDFE7DA389220AC82B25ED015
+1EC38CAB011A18371EC3FE916EA47E0860BCD38A8954898FE3E46727B9F33F95
+4505CBC76B9190D20B81F36B7D1B8D31F00DAA3CA0A4C7CF737125772105D6DC
+55BE6769966E201CCE9067B0DE7455D0B637DE6895F6DA25665A8C60FAE28AB5
+B8D938AE355383D5A7E8AF43E1AF717A84A641B5C39B5C78C2AE4822EFC831E4
+54F8D0EEE1898643F3F19F7A9541A6C3A5241717E5AF71317DEB4225196782CB
+0D463F1704CEA3FAF7B029CABECFFFA0B5A294793DEE89E9828AEA1F964CA8FC
+44BC4205544EC20101ACEEB5F0C987E89EE1A3B41C4D9E9B5D0B5F335430FC30
+D022B751ACC828BF05BB9CF0C4A99EDDD274559D899CC345115139043AD67F74
+C8EA3F535952FC57C7B1A4D173CFE92D2BE2E168AFE53B0123ED12BC14668AC7
+A7F377B09D03A86B9B56E3DAAF67B29A45238A32E752F4AAC556AE9C045619B5
+180048E240BC3421A032F0B104092692DC5E14FAACD1FF8E630D1297493BEFC0
+6E76062BEB15162BEDEB5E7B1C3DA2B161759916EAE4985D5AA04CCF01CC09F8
+C9B0B3AF939F6863AA69ED78F11AD0A7958C2CAB20945954160476AEDC1F2ED0
+27511DA8E191BE3A19BFBE63CD932D520E2F2155D2A47248BAAA2A6DEB901429
+152A88D3A84B01C90C59DEEFAE9D14E7D6760EB5BD37DBB9641A5139CCCCFF99
+743D0EF7157EB1052E9EE3232747851E9C31DD2758DF424DCC1B85CB0FBF5A69
+27DAA8A92C93B0B36DC7C30F977717F163CF4B622BBDD98C7BC719564F0E7343
+49E916CA0F4A9E5086F19D79729FED4C299B32B2D2D87D307F8D7143ADB14D86
+A3707156A7E8600D55BAE11AE3A5065DEAAAD51363D7F1D89283ABB99F456574
+518F511DE201C744E52B9302A6C0707C3FD31F55E9390F29C95334766F22141C
+067633345EC57C679CC980564310A908735C22269BE61C6FBA37DFCF64A2B132
+4975C7387F05F5AFFE16387C10DFCB1F4530B61DDE4029AE021F7F44AA6061EF
+7555A6701D52273DB42B0FBE25E4907D29B68A8B97504C6A06028A19913E30D4
+3CFC695F510B54C0DBEACAA80219290448B41B914D87EA761608C79AEE345E0B
+8EFC712D1327EAC478308BADD4264B3D923DBA1435D0490BE137F9BFE1D32B15
+3781F6C19A78081854253C8926CB10C85AE4B5B6B8B7BB8FD8AA89D7CB232762
+49CEDDF052311F80FC6551DACE8D174B284C06681AB13A8C15291DCBD3082FFF
+0A1D52E914A880B5E22144B00574F4405143647865532688CC0C1CA273992B7E
+B035124F12D8EB6E9B661FF2897A94D1332416773ABA015AC4F672DCD98B8781
+668095436C09E7DF636A980692CAC9E21D663A4F2E87B6457314D5EF06A4FD4F
+A62DAF69F04FB78E479D3A7A78E69BB70A8917FE0F3DFF135373BCFA2BBD7627
+721A1DADF80D26F873BC453CE8F38D233BDD770E46DBBDFF1C747F191B19FD7E
+6756B971549817CF20F756463ABC09D878142A5E1EE4F8D46AD22FA11733F137
+E3EB07400D8F3B130C31ED8127BFF57E176A76DC035CBE27E34313191D1B5CCA
+DFA9257E81C9EB0762933554BCA04D318B90AF8EE4E9C579A0DE62A6F78741FF
+B1477C3EB04BE721
 0000000000000000000000000000000000000000000000000000000000000000
 0000000000000000000000000000000000000000000000000000000000000000
 0000000000000000000000000000000000000000000000000000000000000000
@@ -2293,24 +2341,25 @@ rf /Fe 105[37 27[33 1[37 1[37 37 21 29 25 1[37 37 37
 1[19 25 19 2[25 25 40[{ TeXBase1Encoding ReEncodeFont }45
 74.7198 /Times-Roman rf /Ff 140[39 44 3[55 7[33 44 1[44
 16[72 82[{ TeXBase1Encoding ReEncodeFont }7 99.6264 /Times-Bold
-rf /Fg 252[32 3[{}1 49.8132 /CMSY6 rf /Fh 194[42 2[23
-45[47 12[{}3 83.022 /CMMI10 rf /Fi 142[35 11[30 49[33
-33 33 49[{}5 58.1154 /CMR7 rf /Fj 145[46 69 1[44 7[37
-42[42 1[42 42 1[42 42 42 42 37[60 10[{}12 83.022 /CMR10
-rf /Fk 233[51 22[{}1 83.022 /EURM10 rf /Fl 87[28 45[37
-42 42 60 42 42 23 32 28 42 42 42 42 65 23 42 1[23 42
-42 28 37 42 37 42 37 3[28 1[28 3[78 60 60 51 46 55 1[46
-60 1[74 51 60 1[28 60 60 46 51 60 55 55 60 5[23 23 42
-42 2[42 42 42 42 42 42 1[21 28 21 2[28 28 2[69 34[46
-2[{ TeXBase1Encoding ReEncodeFont }65 83.022 /Times-Roman
-rf /Fm 205[29 29 49[{ TeXBase1Encoding ReEncodeFont }2
-58.1154 /Times-Roman rf /Fn 134[33 1[48 1[33 18 26 22
-1[33 33 33 2[33 1[18 33 1[22 29 33 1[33 29 12[41 37 44
-1[37 2[59 3[22 48 48 37 2[44 44 48 9[33 1[33 2[33 33
-33 1[17 1[17 2[22 22 40[{ TeXBase1Encoding ReEncodeFont }38
-66.4176 /Times-Roman rf /Fo 135[44 1[44 50 28 1[39 2[50
-50 1[28 44 1[28 50 50 28 44 50 44 50 50 10[61 2[50 5[83
-55 1[44 5[72 66 61 19[25 33 25 44[{ TeXBase1Encoding ReEncodeFont }29
+rf /Fg 252[32 3[{}1 49.8132 /CMSY6 rf /Fh 168[78 2[49
+1[63 2[63 9[61 7[42 2[23 45[47 12[{}8 83.022 /CMMI10
+rf /Fi 142[35 11[30 49[33 33 33 49[{}5 58.1154 /CMR7
+rf /Fj 145[46 69 1[44 7[37 42[42 1[42 42 1[42 42 42 42
+37[60 10[{}12 83.022 /CMR10 rf /Fk 233[51 22[{}1 83.022
+/EURM10 rf /Fl 87[28 45[37 42 42 60 42 42 23 32 28 42
+42 42 42 65 23 42 1[23 42 42 28 37 42 37 42 37 3[28 1[28
+4[60 60 51 46 55 1[46 60 1[74 51 60 1[28 60 60 46 51
+60 55 55 60 5[23 23 42 42 1[42 42 42 42 42 42 42 1[21
+28 21 2[28 28 2[69 34[46 2[{ TeXBase1Encoding ReEncodeFont }65
+83.022 /Times-Roman rf /Fm 205[29 29 49[{
+ TeXBase1Encoding ReEncodeFont }2 58.1154 /Times-Roman
+rf /Fn 134[33 1[48 1[33 18 26 22 1[33 33 33 2[33 1[18
+33 1[22 29 33 1[33 29 12[41 37 44 1[37 2[59 3[22 48 48
+37 2[44 44 48 9[33 1[33 2[33 33 33 1[17 1[17 2[22 22
+40[{ TeXBase1Encoding ReEncodeFont }38 66.4176 /Times-Roman
+rf /Fo 135[44 1[44 50 28 1[39 2[50 50 1[28 44 1[28 50
+50 28 44 50 44 50 50 10[61 2[50 5[83 55 1[44 5[72 66
+61 19[25 33 25 44[{ TeXBase1Encoding ReEncodeFont }29
 99.6264 /Times-Italic rf /Fp 252[42 65 1[65{}3 83.022
 /CMSY10 rf /Fq 233[74 22[{}1 119.552 /EURM10 rf /Fr 133[53
 1[60 1[60 66 40 47 53 1[66 60 66 100 33 2[33 66 60 40
@@ -2332,10 +2381,10 @@ TeXDict begin 1 0 bop -25 145 a Fr(Non-ionizing)32 b(radiation)e
 541 y Fn(1)616 577 y Fo(,)h(M.)f(De)o(veaux)1145 541
 y Fn(1)1183 577 y Fo(,)h(B.)f(Linnik)1598 541 y Fn(1)1635
 577 y Fo(,)h(and)f(J)n(.)h(Str)l(oth)2192 541 y Fn(1,2)2302
-577 y Fo(for)f(the)h(CBM-MVD)g(collabor)o(ation)344 671
-y Fm(1)378 701 y Fl(Institut)20 b(f)7 b(\250)-35 b(ur)19
-b(K)n(ernphysik,)f(Goethe)h(Uni)n(v)o(ersity)g(Frankfurt,)f(German)o
-(y;)2533 671 y Fm(2)2567 701 y Fl(GSI)i(Darmstadt,)g(German)o(y)-45
+577 y Fo(for)f(the)h(CBM-MVD)g(collabor)o(ation)341 671
+y Fm(1)374 701 y Fl(Institut)20 b(f)7 b(\250)-35 b(ur)20
+b(K)n(ernphysik,)d(Goethe-Uni)n(v)o(ersity)h(Frankfurt,)g(German)o(y;)
+2537 671 y Fm(2)2570 701 y Fl(GSI)j(Darmstadt,)e(German)o(y)-45
 1019 y(Modern)33 b(0.18)g Fk(\026)p Fl(m)i(CMOS)g(processes)f(pro)o
 (vide)e(numerous)-128 1118 y(features,)h(which)e(may)f(allo)n(w)h(for)f
 (decisi)n(v)o(e)h(progresses)f(in)h(the)-128 1218 y(read-out)f(speed)h
@@ -2363,55 +2412,55 @@ y(suf)n(\002cient)19 b(radiation)e(hardness)h(w)o(as)i(only)e(achie)n
 Fj(1)h(k\012cm)p Fl(.)56 b(It)30 b(could)g(be)-128 2712
 y(demonstrated)20 b(that)h(this)h(increases)f(the)h(non-ionizing)c
 (radiation)-128 2812 y(hardness)k(by)h(more)f(than)h(one)f(order)g(of)h
-(magnitude.)31 b(Therefore)-128 2911 y(pix)o(els)41 b(of)g(this)h
-(high-resisti)n(vity)d(AMS-0.35-process)f(ha)n(ving)-128
-3011 y(a)29 b(pitch)f(of)f Fj(20)d Fp(\000)g Fj(30)j
-Fk(\026)p Fj(m)i Fl(achie)n(v)o(ed)e(a)h(non-ionizing)d(radiation)-128
-3111 y(hardness)35 b(in)g(the)h(order)e(of)h Fj(10)837
-3081 y Fi(13)943 3111 y Fj(n)989 3123 y Fi(eq)1057 3111
-y Fh(=)p Fj(cm)1205 3081 y Fi(2)1278 3111 y Fl([1)o(].)71
-b(Using)35 b(this)-128 3210 y(technology)-5 b(,)54 b(the)49
-b(\002rst)g(v)o(erte)o(x)f(detector)g(based)g(on)h(CMOS)-128
-3310 y(sensors)29 b(is)g(taking)e(data)h(in)g(the)h(hea)n(vy-ion)d(e)o
-(xperiment)g(ST)-8 b(AR)-128 3410 y(since)21 b(2014.)-128
-3509 y(Achie)n(ving)37 b(the)i(required)e(non-ionizing)f(radiation)h
-(hardness,)-128 3609 y(the)48 b(ionizing)e(radiation)g(hardness)g(and)h
-(read-out)e(speed)i(of)-128 3708 y(sensors)39 b(in)f(the)g
-(AMS-0.35-process)d(w)o(as)k(not)f(suf)n(\002cient)f(for)-128
-3808 y(the)47 b(application)d(in)j(the)f(v)o(erte)o(x)f(detectors)g(of)
-h(ALICE)g(and)-128 3908 y(CBM.)28 b(Therefore,)f(a)h(no)o(v)o(el)d
-Fj(0)p Fh(:)p Fj(18)i Fk(\026)p Fj(m)h Fl(process)f(w)o(as)h(e)o
-(xploited)-128 4007 y(pro)o(viding)h(a)j(higher)f(tolerance)f(to)i
-(ionizing)e(radiation)h(due)g(to)-128 4107 y(its)d(deep)e(sub-micron)f
-(process)h([2)o(].)44 b(The)27 b(smaller)f(feature)g(size)-128
-4207 y(allo)n(ws)d(in)g(addition)f(the)h(inte)o(gration)e(of)h(a)h
-(more)f(comple)o(x)f(logic)-128 4306 y(into)31 b(the)g(pix)o(el)g(pro)o
-(viding)d(a)k(f)o(aster)f(read-out.)56 b(An)31 b(additional)-128
-4406 y(feature)g(of)h(this)g(process)g(is)h(the)e(use)h(of)g(v)o(ery)f
-(high)g(resisti)n(vity)-128 4505 y(epitaxial)d(layers)g(up)f(to)h
-Fj(6)g(k\012cm)p Fl(.)48 b(It)29 b(w)o(as)f(e)o(xpected,)g(that)g(this)
--128 4605 y(impro)o(v)o(es)h(the)h(non-ionizing)d(hardness)i(to)i
-(relax)e(on)h(the)g(pix)o(el)-128 4705 y(pitch)20 b(issue.)-54
-4804 y(The)36 b(prototype)e(sensor)i(MIMOSA-34)e(w)o(as)j(designed)e
-(and)-128 4904 y(tested)25 b(after)g(a)g(radiation)e(dose)h(of)h
-Fj(10)1007 4874 y Fi(13)1101 4904 y Fj(n)1147 4916 y
-Fi(eq)1216 4904 y Fh(=)p Fj(cm)1364 4874 y Fi(2)1401
-4904 y Fl(.)39 b(It)25 b(pro)o(vides)-128 5004 y(elongated)16
-b(pix)o(els)i(with)g(a)h(pix)o(el)e(pitch)h(of)g Fj(22)f
-Fk(\026)p Fj(m)11 b Fp(\002)g Fj(33)17 b Fk(\026)p Fj(m)i
-Fl(up)f(to)-128 5103 y Fj(33)g Fk(\026)p Fj(m)8 b Fp(\002)g
-Fj(66)17 b Fk(\026)p Fj(m)p Fl(.)26 b(Figure)16 b(1)i(sho)n(ws)f(the)h
-(response)e(to)i(photons)e(of)-128 5203 y(an)28 b(Fe-55-source)e(of)i
-(the)g(lar)o(gest)f(pix)o(el,)i(which)f(operates)f(v)o(ery)-128
-5302 y(well)d(after)f(irradiation.)33 b(The)23 b(a)n(v)o(erage)f(CCE)i
-(of)f(the)h(seed)f(pix)o(els)-128 5402 y(shrinks)i(by)f(9\045)h(CCE,)h
-(the)f(CCE)g(of)g(the)g(whole)f(cluster)m(,)h(which)-128
-5502 y(is)31 b(more)e(sensiti)n(v)o(e)g(to)h(the)g(recombination)c
-(rate,)32 b(decreases)d(by)p -128 5575 780 4 v -50 5628
-a Fg(\003)-8 5652 y Fn(This)c(w)o(ork)i(has)f(been)g(supported)i(by)d
-(BMBF)h(\(05P12RFFC7\),)j(HIC)d(for)-128 5731 y(F)-5
-b(AIR)17 b(and)h(GSI.)1939 2334 y @beginspecial 0 @llx
-0 @lly 814 @urx 567 @ury 2409 @rwi @setspecial
+(magnitude.)31 b(Therefore)-128 2911 y(pix)o(els)d(of)g(this)g
+(high-resisti)n(vity)f(AMS-0.35-process)e(ha)n(ving)h(a)-128
+3011 y(pitch)k(of)f Fj(20)24 b Fp(\000)h Fj(30)k Fk(\026)p
+Fj(m)i Fl(achie)n(v)o(ed)d(the)h(design)g(goal)g(of)g(a)h(non-)-128
+3111 y(ionizing)d(radiation)g(hardness)g(in)h(the)g(order)e(of)i
+Fj(10)1424 3081 y Fi(13)1522 3111 y Fj(n)1568 3123 y
+Fi(eq)1636 3111 y Fh(=)p Fj(cm)1784 3081 y Fi(2)-128
+3210 y Fl([1].)-128 3310 y(Using)41 b(this)g(technology)-5
+b(,)43 b(a)e(\002rst)h(v)o(erte)o(x)d(detector)h(based)g(on)-128
+3410 y(CMOS)26 b(sensors)e(is)h(taking)f(data)g(in)g(the)h(hea)n
+(vy-ion)d(e)o(xperiment)-128 3509 y(ST)-8 b(AR)22 b(since)e(2014.)-128
+3609 y(Achie)n(ving)37 b(the)i(required)e(non-ionizing)f(radiation)h
+(hardness,)-128 3708 y(the)24 b(ionizing)f(radiation)g(hardness)g(and)g
+(read-out)g(speed)g(of)h(sen-)-128 3808 y(sors)31 b(in)g(the)f
+(AMS-0.35-process)d(were)j(not)g(suf)n(\002cient)g(for)g(the)-128
+3908 y(application)21 b(in)h(modern)e(v)o(erte)o(x)g(detectors,)h(e.g.)
+30 b(in)22 b(ALICE)f(and)-128 4007 y(CBM.)33 b(Therefore,)f(a)g(no)o(v)
+o(el)e Fh(T)12 b(O)r(W)g(E)5 b(R)27 b Fp(\000)g Fj(0)p
+Fh(:)p Fj(18)k Fk(\026)p Fj(m)h Fl(process)-128 4107
+y(w)o(as)e(e)o(xploited)d(and)h(found)g(to)h(pro)o(vide)d(a)k(higher)d
+(tolerance)h(to)-128 4207 y(ionizing)e(radiation)h([2)o(].)46
+b(Moreo)o(v)o(er)m(,)26 b(the)i(smaller)f(feature)f(size)-128
+4306 y(allo)n(ws)c(for)f(the)g(inte)o(gration)f(of)h(a)h(more)e(comple)
+o(x)g(logic)h(into)g(the)-128 4406 y(pix)o(el)34 b(pro)o(viding)e(a)j
+(f)o(aster)g(read-out.)67 b(An)34 b(additional)g(feature)-128
+4505 y(of)26 b(this)h(process)f(is)h(the)g(use)f(of)g(v)o(ery)g(high)f
+(resisti)n(vity)h(epitaxial)-128 4605 y(layers)35 b(up)f(to)g
+Fj(6)g(k\012cm)p Fl(.)68 b(It)35 b(w)o(as)g(e)o(xpected,)h(that)f(this)
+g(w)o(ould)-128 4705 y(impro)o(v)o(e)c(the)i(non-ionizing)e(hardness)h
+(further)m(,)i(which)f(w)o(ould)-128 4804 y(allo)n(w)k(for)e(lar)o(ger)
+g(pix)o(els)h(and)g(therefore)e(for)i(a)h(f)o(aster)f(sensor)-128
+4904 y(readout.)-85 5004 y(T)-7 b(o)26 b(test)g(this)h(assumption,)f
+(the)f(prototype)f(sensor)h(MIMOSA-)-128 5103 y(34)33
+b(w)o(as)h(designed,)h(irradiated)d(to)h Fj(10)1038 5073
+y Fi(13)1141 5103 y Fj(n)1187 5115 y Fi(eq)1256 5103
+y Fh(=)p Fj(cm)1404 5073 y Fi(2)1474 5103 y Fl(and)g(tested)-128
+5203 y(hereafter)-5 b(.)77 b(The)37 b(sensor)h(pro)o(vides)e(elongated)
+f(pix)o(els)j(with)f(a)-128 5302 y(pix)o(el)20 b(pitch)g(between)f
+Fj(22)g Fk(\026)p Fj(m)g Fp(\002)e Fj(33)j Fk(\026)p
+Fj(m)h Fl(and)f Fj(33)f Fk(\026)p Fj(m)g Fp(\002)e Fj(66)j
+Fk(\026)p Fj(m)p Fl(.)-128 5402 y(Figure)f(1)h(sho)n(ws)f(the)h
+(response)e(to)i(photons)e(of)h(an)g(Fe-55-source)-128
+5502 y(of)40 b(the)f(lar)o(gest)g(pix)o(el.)82 b(Its)40
+b(char)o(ge)d(collection)i(ef)n(\002cienc)o(y)f(is)p
+-128 5575 780 4 v -50 5628 a Fg(\003)-8 5652 y Fn(This)25
+b(w)o(ork)i(has)f(been)g(supported)i(by)d(BMBF)h(\(05P12RFFC7\),)j(HIC)
+d(for)-128 5731 y(F)-5 b(AIR)17 b(and)h(GSI.)1939 2334
+y @beginspecial 0 @llx 0 @lly 814 @urx 567 @ury 2409
+@rwi @setspecial
 %%BeginDocument: Mi34Fe55LargePixel.eps
 %!PS-Adobe-3.0 EPSF-3.0 
 %%BoundingBox: 0 0 814 567
@@ -6246,47 +6295,42 @@ count op_count sub {pop} repeat countdictstack dict_count sub {end} repeat b4_in
 (photons)f(after)h(a)g(radiation)f(dose)1939 2616 y(of)g
 Fj(10)2113 2586 y Fi(13)2203 2616 y Fj(n)2249 2628 y
 Fi(eq)2318 2616 y Fh(=)p Fj(cm)2466 2586 y Fi(2)1939
-2889 y Fl(35\045)40 b(CCE.)h(The)f(signal)g(to)g(noise)g(ratio,)45
-b(measured)39 b(with)h(a)1939 2989 y(Sr)n(-90-)p Fh(\014)t
-Fl(-source,)34 b(lo)n(wers)f(from)f(49)g(to)i(35.)62
-b(Comparing)32 b(with)1939 3088 y(sensors)24 b(from)f(beam)g(tests,)j
-(this)e(v)n(alue)f(is)i(suf)n(\002cient)e(to)h(achie)n(v)o(e)1939
-3188 y(an)c(e)o(xcellent)g(detection)f(ef)n(\002cienc)o(y)-5
-b(.)1939 3288 y(In)65 b(conclusion,)75 b(the)65 b(T)o(O)m(WER-0.18)e
-(process)i(allo)n(ws)h(to)1939 3387 y(operate)45 b(CMOS)h(sensors)f
-(despite)g(of)g(a)h(radiation)e(dose)h(of)1939 3487 y
-Fj(10)2023 3457 y Fi(13)2117 3487 y Fj(n)2163 3499 y
-Fi(eq)2232 3487 y Fh(=)p Fj(cm)2380 3457 y Fi(2)2417
-3487 y Fl(,)25 b(which)f(is)h(required.)35 b(This)24
-b(radiation)f(hardness)1939 3587 y(holds)33 b(also)g(for)f(v)o(ery)g
-(lar)o(ge)g(pix)o(els)h(up)f(to)h Fj(33)g Fk(\026)p Fj(m)28
-b Fp(\002)f Fj(66)33 b Fk(\026)p Fj(m)p Fl(.)1939 3686
-y(Therefore,)22 b(the)i(main)f(constraint)f(of)h(a)h(suf)n(\002cient)f
-(non-ionizing)1939 3786 y(radiation)49 b(hardness)f(to)i(use)g(v)o(ery)
-e(small)i(pix)o(els)f(v)n(anished.)1939 3885 y(Ho)n(we)n(v)o(er)m(,)21
-b(a)h(spatial)g(resolution)f(of)h Fj(5)g Fk(\026)p Fj(m)g
-Fl(in)h(a)f(binary)f(read-out)1939 3985 y(can)e(only)f(be)h(reached)f
-(with)h(pix)o(els)g(in)g(the)g(order)f(of)g Fj(20)c Fp(\000)f
-Fj(30)19 b Fk(\026)p Fj(m)1939 4085 y Fl(which)43 b(no)n(w)g(dictates)g
-(the)g(dimensions)f(of)h(the)g(pix)o(el)f(pitch.)1939
-4184 y(Ho)n(we)n(v)o(er)m(,)21 b(lar)o(ger)g(pix)o(els)i(are)f(an)g
-(option)g(for)g(the)g(outer)g(stations,)1939 4284 y(which)29
-b(do)g(not)g(require)f(the)i(highest)f(spatial)g(resolution.)52
-b(This)1939 4384 y(allo)n(ws)32 b(to)f(gain)g(in)g(read-out)f(speed)h
-(and)f(to)i(lo)n(wer)e(the)i(po)n(wer)1939 4483 y(consumption.)53
-b(Last)31 b(is)g(in)g(particular)e(required)g(for)g(the)i(outer)1939
-4583 y(layers)20 b(of)g(the)g(ALICE)h(v)o(erte)o(x)d(detector)-5
-b(.)2682 4903 y Ff(Refer)n(ences)1939 5051 y Fe([1])42
-b(D.)16 b(Doering)h(et)f(al.)22 b(Pitch)16 b(dependence)j(of)d(the)h
-(tolerance)g(of)f(CMOS)2068 5142 y(monolithic)h(acti)n(v)o(e)f(pix)o
-(el)g(sensors)h(to)f(non-ionizing)i(radiation.)j Fd(Nu-)2068
-5233 y(clear)e(Instruments)h(and)f(Methods)i(A)p Fe(,)d
-(730:111\226114,)j(2013.)1939 5358 y([2])42 b(D.)23 b(Doering)h(et)g
-(al.)41 b(Noise)24 b(performance)h(and)f(ionizing)h(radiation)2068
-5449 y(tolerance)k(of)f(CMOS)g(Monolithic)i(Acti)n(v)o(e)e(Pix)o(el)g
-(Sensors)g(using)2068 5540 y(the)i Fc(0)p Fb(:)p Fc(18)i
+2889 y Fl(reduced)34 b(by)h(radiation)e(damage)h(from)g(34\045)h(to)g
+(25\045)g(for)g(the)1939 2989 y(seed)18 b(pix)o(el)g(and)f(from)g
+(close)h(to)g(100\045)g(to)g(62\045)f(for)h(the)g(char)o(ge)e(of)1939
+3088 y(the)21 b(full)g(cluster)-5 b(.)27 b(The)20 b(signal)h(to)g
+(noise)f(ratio,)h(as)g(measured)f(with)1939 3188 y(a)28
+b(Sr)n(-90-)p Fh(\014)t Fl(-source,)e(decreases)g(from)g(49)g(to)h(35.)
+45 b(According)25 b(to)1939 3288 y(our)20 b(e)o(xperience)e(with)i
+(other)f(sensors,)h(this)h(signal)f(to)g(noise)g(ratio)1939
+3387 y(is)h(suf)n(\002cient)f(to)h(pro)o(vide)d(an)i(e)o(xcellent)f
+(detection)g(ef)n(\002cienc)o(y)-5 b(.)1939 3487 y(In)40
+b(conclusion,)j(the)d(no)o(v)o(el)e(process)i(is)h(lik)o(ely)e(to)h
+(pro)o(vide)e(a)1939 3587 y(tolerance)47 b(to)h Fj(10)2489
+3556 y Fi(13)2607 3587 y Fj(n)2653 3599 y Fi(eq)2722
+3587 y Fh(=)p Fj(cm)2870 3556 y Fi(2)2955 3587 y Fl(as)h(needed)d(for)i
+(CBM)h(e)n(v)o(en)1939 3686 y(in)f(combination)d(with)j(a)g
+Fj(33)f Fk(\026)p Fj(m)39 b Fp(\002)f Fj(66)47 b Fk(\026)p
+Fj(m)i Fl(pix)o(el)d(pitch.)1939 3786 y(Consequently)-5
+b(,)34 b(this)f(pitch)g(seems)g(no)n(w)f(limited)h(by)g(the)f(need)1939
+3885 y(for)e(matching)e(a)j(spatial)f(resolution)f(of)h
+Fj(5)g Fk(\026)p Fj(m)h Fl(rather)f(than)f(by)1939 3985
+y(the)34 b(radiation)f(tolerance.)65 b(The)34 b(latter)g(allo)n(ws)h
+(for)e(increasing)1939 4085 y(the)f(pix)o(el)f(pitch)h(of)f(the)h(v)o
+(erte)o(x)e(detector)m(,)j(which)e(comes)h(with)1939
+4184 y(signi\002cant)51 b(adv)n(antages)e(in)i(terms)g(of)f(readout)g
+(speed)g(and)1939 4284 y(reduced)19 b(po)n(wer)g(consumption.)2682
+4604 y Ff(Refer)n(ences)1939 4752 y Fe([1])42 b(D.)16
+b(Doering)h(et)f(al.)22 b(Pitch)16 b(dependence)j(of)d(the)h(tolerance)
+g(of)f(CMOS)2068 4843 y(monolithic)h(acti)n(v)o(e)f(pix)o(el)g(sensors)
+h(to)f(non-ionizing)i(radiation.)j Fd(Nu-)2068 4934 y(clear)e
+(Instruments)h(and)f(Methods)i(A)p Fe(,)d(730:111\226114,)j(2013.)1939
+5059 y([2])42 b(D.)23 b(Doering)h(et)g(al.)41 b(Noise)24
+b(performance)h(and)f(ionizing)h(radiation)2068 5150
+y(tolerance)k(of)f(CMOS)g(Monolithic)i(Acti)n(v)o(e)e(Pix)o(el)g
+(Sensors)g(using)2068 5242 y(the)i Fc(0)p Fb(:)p Fc(18)i
 Fa(\026)p Fc(m)e Fe(CMOS)g(process.)63 b Fd(J)n(ournal)32
-b(of)e(Instrumentation)p Fe(,)2068 5632 y(9\(05\):C0551,)20
+b(of)e(Instrumentation)p Fe(,)2068 5333 y(9\(05\):C0551,)20
 b(2014.)p eop end
 %%Trailer
 
index 601c1a01c968712e4f8979b46ef6f8428aba4e31..76765d8afe71f03cc6302af77c9139f152e64cab 100644 (file)
@@ -30,7 +30,7 @@
 %\author[2]{M. Winter}
 %\affil{Institut f\"ur Kernphysik, Goethe University Frankfurt, Germany and IPHC Strasbourg, France}
 %\affil{IPHC Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France}
-\affil[1]{Institut f\"ur Kernphysik, Goethe University Frankfurt, Germany}
+\affil[1]{Institut f\"ur Kernphysik, Goethe-University Frankfurt, Germany}
 %\affil[2]{IPHC Strasbourg, France}
 \affil[2]{GSI Darmstadt, Germany}
 %\affil[mun]{Forschungsneutronenquelle Heinz-Maier-Leibnitz (FRM II), Technical University Munich, Lichtenbergstr. 1,
@@ -43,7 +43,7 @@
 Modern 0.18 $\upmu$m CMOS processes provide numerous features, which may allow for decisive progresses in the read-out speed and the radiation tolerance of the CMOS Monolithic Active Pixel Sensors (MAPS) to be used in the Micro-Vertex-Detector of CBM. Together with the PICSEL group of IPHC Strasbourg, we aim to exploit those features by migrating the successful architecture of our sensors toward this novel technology. This work reports about our findings on the first prototypes manufactured with the new technology.\newline
 A weak point of CMOS sensors is the slow diffusion of signal charge in the undepleted active medium. A sufficient radiation hardness was only achievable with very small pixels, which do not provide the required readout speed. A few years ago, this obstacle was alleviated by the upcoming availability of CMOS processes providing a high-resistivity epitaxial layer of $1~\rm k\Omega cm$. It could be demonstrated that this increases the non-ionizing radiation hardness by more than one order of magnitude. Therefore pixels of this high-resistivity AMS-0.35-process having a pitch of $20-30\mum$ achieved the design goal of a non-ionizing radiation hardness in the order of $10^{13}\neqcm$ \cite{RESMDD2012}.\newline
 Using this technology, a first vertex detector based on CMOS sensors is taking data in the heavy-ion experiment STAR since 2014.\newline   
-Achieving the required non-ionizing radiation hardness, the ionizing radiation hardness and read-out speed of sensors in the AMS-0.35-process was not sufficient for the application in the vertex detectors of ALICE and CBM. Therefore, a novel $0.18\mum$ process was exploited and found to provide a higher tolerance to ionizing radiation \cite{IWORID2013}. Moreover, the smaller feature size allows for the integration of a more complex logic into the pixel providing a faster read-out.
+Achieving the required non-ionizing radiation hardness, the ionizing radiation hardness and read-out speed of sensors in the AMS-0.35-process were not sufficient for the application in modern vertex detectors, e.g. in ALICE and CBM. Therefore, a novel $TOWER-0.18\mum$ process was exploited and found to provide a higher tolerance to ionizing radiation \cite{IWORID2013}. Moreover, the smaller feature size allows for the integration of a more complex logic into the pixel providing a faster read-out.
  An additional feature of this process is the use of very high resistivity epitaxial layers up to $6~\rm k\Omega cm$. It was expected, that this would improve the non-ionizing hardness further, which would allow for larger pixels and therefore for a faster sensor readout.\newline
 \begin{figure}
 \centering