]> jspc29.x-matter.uni-frankfurt.de Git - daqdocu.git/commitdiff
RL: Quick Start guide integrated
authorhadaq <hadaq>
Sat, 1 Dec 2012 23:17:19 +0000 (23:17 +0000)
committerhadaq <hadaq>
Sat, 1 Dec 2012 23:17:19 +0000 (23:17 +0000)
trb3/TdcBuildingBlocks.tex
trb3/main.tex

index c4a55052d33ac0108c229c9bb557e2a371bf3774..95589a43fe459d744886b071b7d2099c0674a99c 100644 (file)
@@ -31,7 +31,7 @@ In each TDC channel the measurement result of the fine time measurement block is
       \label{eq:tdcDeltaT}
     \end{minipage}}
   \vspace{-0.2cm}
-  \caption{\subref{fig:tdcTimeDiff} Illustration of two time measurements and \subref{eq:tdcDeltaT} calculation of the time interval between them.}
+  \caption{\subref{fig:tdcTimeDiff} Illustration of two time measurements and \subref{eq:tdcDeltaT} calculation of the time interval between them.}
   \label{fig:tdcDeltaTime}
 \end{figure}
 
@@ -73,7 +73,8 @@ For an FPGA TDC, digital calibration has to be applied to the raw data. Bin-by-b
 \begin{equation}
        BW=n\times\frac{T_o}{N}
 \end{equation}
-where $n$ is the actual number of hits of the bin and $N$ is the total number of hits. Using this calculation and the DNL histogram, which is already calculated, a \textit{Look-Up Table} (LUT)\footnote{A lookup table is used to display information, which is recorded previously, corresponding to an individual input.} is created to store the time values of each bin. The corresponding time value for each bin is the middle point of the bin width values. The time value of the first bin is the half of the bin width of the first bin. For the second bin, it is the summation of the bin width value of the first bin and half of the bin width value of the second bin, and so on. After creating the LUT this is used for subsequent measurements. An example of calibrated and uncalibrated time values are shown in \autoref{fig:calibration}. As may be seen from the graph, the quantisation levels of the calibrated data are distributed along the time more evenly than the uncalibrated data quantisation steps. As these quantisation steps effect the non-linearities of the TDC, calibration has lowers the non-linearity values.
+where $n$ is the actual number of hits of the bin and $N$ is the total number of hits. Using this calculation and the DNL histogram, which is already calculated, a \textit{Look-Up Table} (LUT)\footnote{A lookup table is used to display information, which is recorded previously, corresponding to an individual input.} is created to store the time values of each bin. The corresponding time value for each bin is the middle point of the bin width values. The time value of the first bin is the half of the bin width of the first bin. For the second bin, it is the summation of the bin width value of the first bin and half of the bin width value of the second bin, and so on. After creating the LUT this is used for subsequent measurements. An example of calibrated and uncalibrated time values are shown in \autoref{fig:calibration}. As may be seen from the graph, the quantisation levels of the calibrated data are distributed along the time more evenly than the uncalibrated data quantisation steps. As these quantisation 
+steps effect the non-linearities of the TDC, calibration has lowers the non-linearity values.
 
 \begin{figure}[htp]
   \centering
index f65f12f42568a3942169c144b2ae38bac834d45b..43de791191d2bf3e629ad646c2ca57ebf5b167f3 100755 (executable)
@@ -3,6 +3,8 @@
 %Einstellungen der Seitenr?nder
 \usepackage[left=3.5cm,right=3cm,top=2.5cm,bottom=2.5cm,includeheadfoot]{geometry}
 
+\input{trb3qs_preamble}
+
 \usepackage[utf8]{inputenc}
 \usepackage{amsfonts}
 \usepackage[american]{babel}
@@ -29,7 +31,6 @@
 \usepackage[caption=false]{subfig}
 \usepackage{amsmath}
 
-
 \definecolor{darkblue}{rgb}{.1,.1,.6}
 \usepackage[linkbordercolor={0 0 0},
             pdfborder={0 0 0},
 
 \part{Experimental Setups and Configurations}
 
-
+\input{trb3qs_part}
 
 
   \cleardoublepage