+++ /dev/null
-library ieee;
-use ieee.std_logic_1164.all;
-use ieee.numeric_std.all;
-
-
-
-entity uart_rec is
--- generic(
--- CLK_DIV : integer
--- );
- port(
- CLK_DIV : in integer;
- CLK : in std_logic;
- RST : in std_logic;
- RX : in std_logic;
-
- DATA_OUT : out std_logic_vector(7 downto 0);
- DATA_WAITING : out std_logic;
- DEBUG : out std_logic_vector(3 downto 0)
- );
-end entity;
-
-
-
-architecture uart_rec_arch of uart_rec is
-
-signal clk_div_counter: unsigned(15 downto 0) := x"0000";
-signal symbol_pulse : std_logic := '0';
-signal symbol_counter: unsigned(3 downto 0) := x"0";
-
-type state_type is (idle,receiving,update_parallel_output);
-signal state: state_type := idle;
-
--- MSB is the stopbit, LSB is the start bit, both are never changed
-signal rx_shift_register: std_logic_vector(9 downto 0);
-signal symbol : std_logic := '1';
-signal data_waiting_sig: std_logic := '0';
-signal current_data_out: std_logic_vector(7 downto 0) := "00000000";
-signal symbol_start_pulse : std_logic := '0'; -- just debug
-signal rst_clk_div_counter : std_logic;
-
-
-begin
-----------------------------
--- debug
-----------------------------
-
-DEBUG(0) <= symbol_start_pulse;
-DEBUG(1) <= symbol_pulse;
-DEBUG(2) <= data_waiting_sig;
-DEBUG(3) <= '0';
-
-----------------------------
--- Inputs
-----------------------------
- sync_input : process begin
- wait until rising_edge(CLK);
- symbol <= RX;
- end process;
-
-----------------------------
--- Outputs
-----------------------------
- sync_output : process begin
- wait until rising_edge(CLK);
- DATA_WAITING <= data_waiting_sig;
- DATA_OUT <= current_data_out;
- end process;
-
-----------------------------
--- Generate Serial Clock
-----------------------------
- clock_division : process begin
- wait until rising_edge(CLK);
- -- scaling down the main clock to the desired baudrate
- if clk_div_counter = CLK_DIV-1 then
- clk_div_counter <= x"0000";
- else
- clk_div_counter <= clk_div_counter + 1;
- end if;
- -- generates symbol_pulse, a signal that has 1 clock cycle pulses, one symbol duration period apart
- -- in contrast to the transceiver module, the symbol pulse is generated in the middle of the
- -- symbol period
- -- if clk_div_counter = '0' & CLK_DIV(15 downto 1) then -- CLK_DIV/2 by >> (right shifting)
- if clk_div_counter = CLK_DIV/2 then
- symbol_pulse <= '1';
- else
- symbol_pulse <= '0';
- end if;
-
- if clk_div_counter = x"0000" then
- symbol_start_pulse <= '1';
- else
- symbol_start_pulse <= '0';
- end if;
- if (RST or rst_clk_div_counter) = '1' then
- clk_div_counter <= x"0000";
- end if;
-
- end process;
-
-----------------------------
--- State Machine of the Receiver
-----------------------------
- state_machine : process begin
- wait until rising_edge(CLK);
- data_waiting_sig <= '0';
- rst_clk_div_counter <= '0';
-
- -- state machine rules:
- case state is
- when idle =>
-
- if symbol = '0' then -- the start bit comes!
- state <= receiving;
- -- restart the divcounter
- -- clk_div_counter <= x"0000";
- rst_clk_div_counter<= '1';
- symbol_counter <= x"0";
-
- end if;
-
- when receiving =>
- if symbol_pulse = '1' then
- if symbol_counter <= 9 then -- reception process
- rx_shift_register(to_integer(symbol_counter)) <= symbol;
- symbol_counter <= symbol_counter + 1;
- end if;
- if symbol_counter = 9 then
- state <= update_parallel_output;
- end if;
-
-
- end if;
- when update_parallel_output =>
- state <= idle;
- -- check start and stop bit consistency
- -- (checking the start bit again seems a little obsolete)
- -- only if bit was received correctly output the data!
- if rx_shift_register(0) = '0' and rx_shift_register(9) = '1' then
- current_data_out <= rx_shift_register(8 downto 1);
- data_waiting_sig <= '1';
- end if;
-
- end case;
-
- -- reset clock divider counters when reset signal is on
- if RST = '1' then
- symbol_counter <= x"0";
- data_waiting_sig <= '0';
- state <= idle;
- end if;
-
- end process;
-
-
-end architecture;
\ No newline at end of file
+++ /dev/null
-library ieee;
-use ieee.std_logic_1164.all;
-use ieee.numeric_std.all;
-
-
-
-entity uart_trans is
--- generic(
--- CLK_DIV : integer
--- );
- port(
- CLK_DIV : in integer;
- CLK : in std_logic;
- RST : in std_logic;
-
- DATA_IN : in std_logic_vector(7 downto 0);
- SEND : in std_logic;
- READY : out std_logic;
-
- TX : out std_logic;
- DEBUG : out std_logic_vector(3 downto 0)
-
- );
-end entity;
-
-
-
-architecture uart_trans_arch of uart_trans is
-
-
-
-signal clk_div_counter: unsigned(15 downto 0) := x"0000";
-signal symbol_start_pulse : std_logic := '0';
-signal symbol_counter: unsigned(3 downto 0) := x"0";
-
-type state_type is (idle,transmitting);
-signal state: state_type := idle;
-
--- MSB is the stopbit, LSB is the start bit, both are never changed
-signal tx_shift_register: std_logic_vector(9 downto 0) := "1000000000";
-signal symbol: std_logic := '1';
-signal ready_sig: std_logic := '1';
-signal rst_clk_div_counter : std_logic;
-
-
-begin
-----------------------------
--- debug
-----------------------------
-
-DEBUG(0) <= symbol_start_pulse;
-DEBUG(1) <= '0';
-DEBUG(2) <= ready_sig;
-DEBUG(3) <= '0';
-
-----------------------------
--- Inputs
-----------------------------
--- sync_input : process begin
--- wait until rising_edge(CLK);
--- synced_send <= SEND;
--- end process;
--- hard wired stuff
-
-----------------------------
--- Outputs
-----------------------------
- sync_output : process begin
- wait until rising_edge(CLK);
- TX <= symbol;
- end process;
-
- READY <= ready_sig and not SEND;
-
-----------------------------
--- Generate Serial Clock
-----------------------------
- clock_division : process begin
- wait until rising_edge(CLK);
- -- scaling down the main clock to the desired baudrate
- if clk_div_counter = CLK_DIV-1 then
- clk_div_counter <= x"0000";
- else
- clk_div_counter <= clk_div_counter + 1;
- end if;
-
-
- if clk_div_counter = x"0000" then
- symbol_start_pulse <= '1';
- else
- symbol_start_pulse <= '0';
- end if;
- if (RST or rst_clk_div_counter) = '1' then
- clk_div_counter <= x"0000";
- end if;
-
- end process;
-
-----------------------------
--- State Machine of the Transmitter
-----------------------------
-
- state_machine : process begin
- wait until rising_edge(CLK);
- -- state machine rules:
- rst_clk_div_counter <= '0';
-
- case state is
- when idle =>
- if SEND = '1' then
- state <= transmitting;
- symbol_counter <= x"0";
- -- capture the byte at the parallel input
- tx_shift_register(8 downto 1) <= DATA_IN;
- ready_sig <= '0';
- end if;
-
- when transmitting =>
- if symbol_start_pulse = '1' then
- if symbol_counter <= 9 then -- transmission process
- symbol <= tx_shift_register(to_integer(symbol_counter));
- symbol_counter <= symbol_counter + 1;
- end if;
-
- end if;
- if symbol_counter = 10 then -- pulse #10 (1 start, 8 data, 1 stop) has been sent
- --, time to go to idle mode again
- -- pull the tx line high again, actually obsolete, because stop bit is 1
- symbol <= '1';
- ready_sig <= '1';
- state <= idle;
- end if;
-
- end case;
-
- -- reset clock divider counters when reset signal is on
- if RST = '1' then
- state <= idle;
- ready_sig <= '1';
- end if;
-
- end process;
-
-
-
-end architecture;
-