--- /dev/null
+-------------------------------------------------------------------------------
+-- Title : Encoder 304 bits
+-------------------------------------------------------------------------------
+-- File : Encoder_304_Bit.vhd
+-- Author : Cahit Ugur
+-- Created : 2011-11-28
+-- Last update: 2012-08-30
+-------------------------------------------------------------------------------
+-- Description: Encoder for 304 bits
+-------------------------------------------------------------------------------
+-- Revisions :
+-- Date Version Author Description
+-- 2011-11-28 1.0 ugur Created
+-------------------------------------------------------------------------------
+
+library ieee;
+use ieee.std_logic_unsigned.all;
+use ieee.std_logic_1164.all;
+use ieee.numeric_std.all;
+
+library work;
+-- use work.trb_net_std.all;
+-- use work.trb_net_components.all;
+use work.trb3_components.all;
+-- use work.version.all;
+
+-- synopsys translate_off
+library ecp3;
+use ecp3.components.all;
+-- synopsys translate_on
+
+entity Encoder_304_Bit is
+ port (
+ RESET : in std_logic; -- system reset
+ CLK : in std_logic; -- system clock
+ START_IN : in std_logic;
+ THERMOCODE_IN : in std_logic_vector(303 downto 0);
+ FINISHED_OUT : out std_logic;
+ BINARY_CODE_OUT : out std_logic_vector(9 downto 0);
+ ENCODER_DEBUG : out std_logic_vector(31 downto 0)
+ );
+end Encoder_304_Bit;
+
+architecture behavioral of Encoder_304_Bit is
+
+-------------------------------------------------------------------------------
+-- Component Declarations
+-------------------------------------------------------------------------------
+ component LUT4
+ generic (
+ INIT : std_logic_vector);
+ port (
+ A, B, C, D : in std_ulogic;
+ Z : out std_ulogic);
+ end component;
+
+-------------------------------------------------------------------------------
+-- Signal Declarations
+-------------------------------------------------------------------------------
+ signal P_lut : std_logic_vector(37 downto 0);
+ signal P_one : std_logic_vector(37 downto 0);
+ signal mux_control : std_logic_vector(5 downto 0);
+ signal mux_control_reg : std_logic_vector(5 downto 0);
+ signal mux_control_2reg : std_logic_vector(5 downto 0);
+ signal mux_control_3reg : std_logic_vector(5 downto 0);
+ signal interval_reg : std_logic_vector(8 downto 0);
+ signal interval_binary : std_logic_vector(2 downto 0);
+ signal binary_code_f : std_logic_vector(8 downto 0);
+ signal binary_code_r : std_logic_vector(8 downto 0);
+ signal start_reg : std_logic;
+ signal start_2reg : std_logic;
+ signal start_3reg : std_logic;
+ signal rom_done_i : std_logic; -- indicates that the encoding of rising edge is done
+ signal rom_done_reg : std_logic; -- indicates that the encoding of rising edge is done
+ signal interval_detected_i : std_logic;
+ signal address_i : std_logic_vector(9 downto 0);
+ signal q_reg : std_logic_vector(7 downto 0);
+ signal q_2reg : std_logic_vector(7 downto 0);
+-- FSM signals
+ type FSM is (IDLE, START_CNT_2, START_CNT_3, START_CNT_4);
+ signal FSM_CURRENT, FSM_NEXT : FSM;
+
+ signal start_cnt_1_fsm : std_logic;
+ signal start_cnt_2_fsm : std_logic;
+ signal start_cnt_3_fsm : std_logic;
+ signal start_cnt_4_fsm : std_logic;
+ signal start_cnt_1_i : std_logic;
+ signal start_cnt_2_i : std_logic;
+ signal start_cnt_3_i : std_logic;
+ signal start_cnt_4_i : std_logic;
+--
+ signal proc_cnt_1 : std_logic_vector(3 downto 0);
+ signal proc_cnt_2 : std_logic_vector(3 downto 0);
+ signal proc_cnt_3 : std_logic_vector(3 downto 0);
+ signal proc_cnt_4 : std_logic_vector(3 downto 0);
+ signal proc_finished_1 : std_logic;
+ signal proc_finished_2 : std_logic;
+ signal proc_finished_3 : std_logic;
+ signal proc_finished_4 : std_logic;
+ signal conv_finished_i : std_logic;
+
+ signal thermocode : std_logic_vector(305 downto 0);
+
+ attribute syn_keep : boolean;
+ attribute syn_keep of mux_control : signal is true;
+ attribute syn_keep of mux_control_reg : signal is true;
+ attribute syn_keep of mux_control_2reg : signal is true;
+ attribute syn_keep of mux_control_3reg : signal is true;
+-------------------------------------------------------------------------------
+begin
+
+ thermocode <= THERMOCODE_IN & "11";
+
+ --purpose : Register signals
+ Register_Signals : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ start_reg <= '0';
+ start_2reg <= '0';
+ start_3reg <= '0';
+ mux_control_reg <= (others => '0');
+ mux_control_2reg <= (others => '0');
+ mux_control_3reg <= (others => '0');
+ q_2reg <= (others => '0');
+ rom_done_reg <= '0';
+ interval_detected_i <= '0';
+ else
+ start_reg <= START_IN;
+ start_2reg <= start_reg;
+ start_3reg <= start_2reg;
+ mux_control_reg <= mux_control;
+ mux_control_2reg <= mux_control_reg;
+ mux_control_3reg <= mux_control_2reg;
+ q_2reg <= q_reg;
+ rom_done_reg <= rom_done_i;
+ interval_detected_i <= rom_done_i and rom_done_reg;
+ end if;
+ end if;
+ end process Register_Signals;
+
+-- Interval_Determination_First : LUT4
+-- generic map (INIT => X"15A8")
+-- port map (A => '1', B => '1', C => thermocode(0), D => START_IN,
+-- Z => P_lut(0));
+
+ Interval_Determination : for i in 0 to 37 generate
+ U : LUT4
+ generic map (INIT => X"15A8")
+ port map (A => thermocode(8*i), B => thermocode(8*i+1), C => thermocode(8*i+2), D => START_IN,
+ Z => P_lut(i));
+ end generate Interval_Determination;
+-------------------------------------------------------------------------------
+
+ Gen_P_one : for i in 0 to 36 generate
+ P_one(i) <= P_lut(i) and (not P_lut(i+1)) when rising_edge(CLK);
+ end generate Gen_P_one;
+
+ P_one_assign : process (CLK, START_IN, P_lut)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' or START_IN = '0' then
+ P_one(37) <= '0';
+ else
+ P_one(37) <= P_lut(37);
+ end if;
+ end if;
+ end process P_one_assign;
+
+
+ gen_bitloop : for i in 0 to 8 generate
+ process
+ variable tmp : std_logic;
+ begin
+ wait until rising_edge(CLK);
+ tmp := '0';
+ muxloop : for p in 0 to 37 loop
+ tmp := tmp or (P_one(p) and thermocode(p*8+1+i));
+ end loop;
+ interval_reg(i) <= tmp;
+ end process;
+ end generate;
+
+ Interval_Number_to_Binary : process (CLK, RESET)
+ begin -- The interval number with the 0-1 transition is converted from 1-of-N code to binary
+ -- code for the control of the MUX.
+ if rising_edge(CLK) then
+ -- if RESET = '1' then
+ -- mux_control <= (others => '0');
+ -- els
+ if START_IN = '1' or start_reg = '1' then
+ mux_control(0) <= P_one(0) or P_one(2) or P_one(4) or P_one(6) or P_one(8) or P_one(10) or
+ P_one(12) or P_one(14) or P_one(16) or P_one(18) or P_one(20) or P_one(22) or
+ P_one(24) or P_one(26) or P_one(28) or P_one(30) or P_one(32) or P_one(34) or
+ P_one(36);
+ mux_control(1) <= P_one(1) or P_one(2) or P_one(5) or P_one(6) or P_one(9) or P_one(10) or
+ P_one(13) or P_one(14) or P_one(17) or P_one(18) or P_one(21) or P_one(22) or
+ P_one(25) or P_one(26) or P_one(29) or P_one(30) or P_one(33) or P_one(34) or
+ P_one(37);
+ mux_control(2) <= P_one(3) or P_one(4) or P_one(5) or P_one(6) or P_one(11) or P_one(12) or
+ P_one(13) or P_one(14) or P_one(19) or P_one(20) or P_one(21) or P_one(22) or
+ P_one(27) or P_one(28) or P_one(29) or P_one(30) or P_one(35) or P_one(36) or
+ P_one(37);
+ mux_control(3) <= P_one(7) or P_one(8) or P_one(9) or P_one(10) or P_one(11) or P_one(12) or
+ P_one(13) or P_one(14) or P_one(23) or P_one(24) or P_one(25) or P_one(26) or
+ P_one(27) or P_one(28) or P_one(29) or P_one(30);
+ mux_control(4) <= P_one(15) or P_one(16) or P_one(17) or P_one(18) or P_one(19) or P_one(20) or
+ P_one(21) or P_one(22) or P_one(23) or P_one(24) or P_one(25) or P_one(26) or
+ P_one(27) or P_one(28) or P_one(29) or P_one(30);
+ mux_control(5) <= P_one(31) or P_one(32) or P_one(33) or P_one(34) or P_one(35) or P_one(36) or
+ P_one(37);
+ else
+ mux_control <= (others => '0');
+ end if;
+ end if;
+ end process Interval_Number_to_Binary;
+--
+-- Interval_Selection : process (CLK, RESET)
+-- begin -- The interval with the 0-1 transition is selected.
+-- if rising_edge(CLK) then
+-- if RESET = '1' then
+-- interval_reg <= (others => '0');
+-- else
+-- case mux_control is
+-- when "000001" => interval_reg <= thermocode(7 downto 0) & '1';
+-- when "000010" => interval_reg <= thermocode(15 downto 7);
+-- when "000011" => interval_reg <= thermocode(23 downto 15);
+-- when "000100" => interval_reg <= thermocode(31 downto 23);
+-- when "000101" => interval_reg <= thermocode(39 downto 31);
+-- when "000110" => interval_reg <= thermocode(47 downto 39);
+-- when "000111" => interval_reg <= thermocode(55 downto 47);
+-- when "001000" => interval_reg <= thermocode(63 downto 55);
+-- when "001001" => interval_reg <= thermocode(71 downto 63);
+-- when "001010" => interval_reg <= thermocode(79 downto 71);
+-- when "001011" => interval_reg <= thermocode(87 downto 79);
+-- when "001100" => interval_reg <= thermocode(95 downto 87);
+-- when "001101" => interval_reg <= thermocode(103 downto 95);
+-- when "001110" => interval_reg <= thermocode(111 downto 103);
+-- when "001111" => interval_reg <= thermocode(119 downto 111);
+-- when "010000" => interval_reg <= thermocode(127 downto 119);
+-- when "010001" => interval_reg <= thermocode(135 downto 127);
+-- when "010010" => interval_reg <= thermocode(143 downto 135);
+-- when "010011" => interval_reg <= thermocode(151 downto 143);
+-- when "010100" => interval_reg <= thermocode(159 downto 151);
+-- when "010101" => interval_reg <= thermocode(167 downto 159);
+-- when "010110" => interval_reg <= thermocode(175 downto 167);
+-- when "010111" => interval_reg <= thermocode(183 downto 175);
+-- when "011000" => interval_reg <= thermocode(191 downto 183);
+-- when "011001" => interval_reg <= thermocode(199 downto 191);
+-- when "011010" => interval_reg <= thermocode(207 downto 199);
+-- when "011011" => interval_reg <= thermocode(215 downto 207);
+-- when "011100" => interval_reg <= thermocode(223 downto 215);
+-- when "011101" => interval_reg <= thermocode(231 downto 223);
+-- when "011110" => interval_reg <= thermocode(239 downto 231);
+-- when "011111" => interval_reg <= thermocode(247 downto 239);
+-- when "100000" => interval_reg <= thermocode(255 downto 247);
+-- when "100001" => interval_reg <= thermocode(263 downto 255);
+-- when "100010" => interval_reg <= thermocode(271 downto 263);
+-- when "100011" => interval_reg <= thermocode(279 downto 271);
+-- when "100100" => interval_reg <= thermocode(287 downto 279);
+-- when "100101" => interval_reg <= thermocode(295 downto 287);
+-- when "100110" => interval_reg <= thermocode(303 downto 295);
+-- when others => interval_reg <= (others => '0');
+-- end case;
+-- end if;
+-- end if;
+-- end process Interval_Selection;
+
+ ROM_Encoder_1 : ROM_Encoder
+ port map (
+ Address => address_i,
+ OutClock => CLK,
+ OutClockEn => '1',
+ Reset => RESET,
+ Q => q_reg);
+ address_i <= start_2reg & interval_reg;
+ rom_done_i <= q_2reg(7);
+ interval_binary <= q_2reg(2 downto 0);
+
+ Binary_Code_Calculation_rf : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ binary_code_f <= (others => '0');
+ binary_code_r <= (others => '0');
+ elsif rom_done_i = '1' then
+ binary_code_r <= (mux_control_3reg - 1) & interval_binary;
+ binary_code_f <= binary_code_r;
+ end if;
+ end if;
+ end process Binary_Code_Calculation_rf;
+
+ --purpose: FSMs the encoder
+ FSM_CLK : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ FSM_CURRENT <= IDLE;
+ start_cnt_1_i <= '0';
+ start_cnt_2_i <= '0';
+ start_cnt_3_i <= '0';
+ start_cnt_4_i <= '0';
+ else
+ FSM_CURRENT <= FSM_NEXT;
+ start_cnt_1_i <= start_cnt_1_fsm;
+ start_cnt_2_i <= start_cnt_2_fsm;
+ start_cnt_3_i <= start_cnt_3_fsm;
+ start_cnt_4_i <= start_cnt_4_fsm;
+ end if;
+ end if;
+ end process FSM_CLK;
+
+ FSM_PROC : process (FSM_CURRENT, START_IN)
+ begin
+
+ FSM_NEXT <= IDLE;
+ start_cnt_1_fsm <= '0';
+ start_cnt_2_fsm <= '0';
+ start_cnt_3_fsm <= '0';
+ start_cnt_4_fsm <= '0';
+
+ case (FSM_CURRENT) is
+ when IDLE =>
+ if START_IN = '1' then
+ FSM_NEXT <= START_CNT_2;
+ start_cnt_1_fsm <= '1';
+ end if;
+
+ when START_CNT_2 =>
+ if START_IN = '1' then
+ FSM_NEXT <= START_CNT_3;
+ start_cnt_2_fsm <= '1';
+ else
+ FSM_NEXT <= START_CNT_2;
+ end if;
+
+ when START_CNT_3 =>
+ if START_IN = '1' then
+ FSM_NEXT <= START_CNT_4;
+ start_cnt_3_fsm <= '1';
+ else
+ FSM_NEXT <= START_CNT_3;
+ end if;
+
+ when START_CNT_4 =>
+ if START_IN = '1' then
+ FSM_NEXT <= IDLE;
+ start_cnt_4_fsm <= '1';
+ else
+ FSM_NEXT <= START_CNT_4;
+ end if;
+
+ when others =>
+ FSM_NEXT <= IDLE;
+ end case;
+ end process FSM_PROC;
+
+ --purpose : Conversion number 1
+ Conv_1 : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ proc_cnt_1 <= x"5";
+ proc_finished_1 <= '0';
+ elsif start_cnt_1_i = '1' then
+ proc_cnt_1 <= x"1";
+ proc_finished_1 <= '0';
+ elsif proc_cnt_1 = x"4" then
+ proc_cnt_1 <= proc_cnt_1 + 1;
+ proc_finished_1 <= '1';
+ elsif proc_cnt_1 = x"5" then
+ proc_cnt_1 <= x"5";
+ proc_finished_1 <= '0';
+ else
+ proc_cnt_1 <= proc_cnt_1 + 1;
+ proc_finished_1 <= '0';
+ end if;
+ end if;
+ end process Conv_1;
+
+ --purpose : Conversion number 2
+ Conv_2 : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ proc_cnt_2 <= x"5";
+ proc_finished_2 <= '0';
+ elsif start_cnt_2_i = '1' then
+ proc_cnt_2 <= x"1";
+ proc_finished_2 <= '0';
+ elsif proc_cnt_2 = x"4" then
+ proc_cnt_2 <= proc_cnt_2 + 1;
+ proc_finished_2 <= '1';
+ elsif proc_cnt_2 = x"5" then
+ proc_cnt_2 <= x"5";
+ proc_finished_2 <= '0';
+ else
+ proc_cnt_2 <= proc_cnt_2 + 1;
+ proc_finished_2 <= '0';
+ end if;
+ end if;
+ end process Conv_2;
+
+ --purpose : Conversion number 3
+ Conv_3 : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ proc_cnt_3 <= x"5";
+ proc_finished_3 <= '0';
+ elsif start_cnt_3_i = '1' then
+ proc_cnt_3 <= x"1";
+ proc_finished_3 <= '0';
+ elsif proc_cnt_3 = x"4" then
+ proc_cnt_3 <= proc_cnt_3 + 1;
+ proc_finished_3 <= '1';
+ elsif proc_cnt_3 = x"5" then
+ proc_cnt_3 <= x"5";
+ proc_finished_3 <= '0';
+ else
+ proc_cnt_3 <= proc_cnt_3 + 1;
+ proc_finished_3 <= '0';
+ end if;
+ end if;
+ end process Conv_3;
+
+ --purpose : Conversion number 4
+ Conv_4 : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ proc_cnt_4 <= x"5";
+ proc_finished_4 <= '0';
+ elsif start_cnt_4_i = '1' then
+ proc_cnt_4 <= x"1";
+ proc_finished_4 <= '0';
+ elsif proc_cnt_4 = x"4" then
+ proc_cnt_4 <= proc_cnt_4 + 1;
+ proc_finished_4 <= '1';
+ elsif proc_cnt_4 = x"5" then
+ proc_cnt_4 <= x"5";
+ proc_finished_4 <= '0';
+ else
+ proc_cnt_4 <= proc_cnt_4 + 1;
+ proc_finished_4 <= '0';
+ end if;
+ end if;
+ end process Conv_4;
+
+ Binary_Code_Calculation : process (CLK, RESET)
+ begin
+ if rising_edge(CLK) then
+ if RESET = '1' then
+ BINARY_CODE_OUT <= (others => '0');
+ FINISHED_OUT <= '0';
+ elsif conv_finished_i = '1' and interval_detected_i = '1' then
+ BINARY_CODE_OUT <= ('0' & binary_code_r) + ('0' & binary_code_f);
+ FINISHED_OUT <= '1';
+ else
+ BINARY_CODE_OUT <= (others => '0');
+ FINISHED_OUT <= '0';
+ end if;
+ end if;
+ end process Binary_Code_Calculation;
+
+ conv_finished_i <= proc_finished_1 or proc_finished_2 or proc_finished_3 or proc_finished_4;
+
+
+-------------------------------------------------------------------------------
+-- DEBUG
+-------------------------------------------------------------------------------
+ ----purpose : Conversion number 1
+ --Conv_1 : process (CLK, RESET)
+ --begin
+ -- if rising_edge(CLK) then
+ -- if RESET = '1' then
+ -- proc_cnt_1 <= x"3";
+ -- proc_finished_1 <= '0';
+ -- elsif START_IN = '1' then
+ -- proc_cnt_1 <= x"1";
+ -- proc_finished_1 <= '0';
+ -- elsif proc_cnt_1 = x"1" or proc_cnt_1 = x"2" then
+ -- proc_cnt_1 <= proc_cnt_1 + 1;
+ -- proc_finished_1 <= '1';
+ -- elsif proc_cnt_1 = x"3" then
+ -- proc_cnt_1 <= x"3";
+ -- proc_finished_1 <= '0';
+ -- else
+ -- proc_cnt_1 <= proc_cnt_1 + 1;
+ -- proc_finished_1 <= '0';
+ -- end if;
+ -- end if;
+ --end process Conv_1;
+
+ --Binary_Code_Calculation : process (CLK, RESET)
+ --begin
+ -- if rising_edge(CLK) then
+ -- if RESET = '1' then
+ -- BINARY_CODE_OUT <= (others => '0');
+ -- FINISHED_OUT <= '0';
+ -- elsif proc_finished_1 = '1' then
+ -- BINARY_CODE_OUT <= address_i; --'0' & interval_reg;
+ -- FINISHED_OUT <= '1';
+ -- else
+ -- BINARY_CODE_OUT <= (others => '0');
+ -- FINISHED_OUT <= '0';
+ -- end if;
+ -- end if;
+ --end process Binary_Code_Calculation;
+
+ --ENCODER_DEBUG(8 downto 0) <= interval_reg;
+
+end behavioral;