--- /dev/null
+# Hey Emacs, this is a -*- makefile -*-
+
+# AVR-GCC Makefile template, derived from the WinAVR template (which
+# is public domain), believed to be neutral to any flavor of "make"
+# (GNU make, BSD make, SysV make)
+
+
+MCU = atmega32u4
+FORMAT = ihex
+TARGET = main
+SRC = $(TARGET).c usb_serial.c
+ASRC =
+OPT = 2
+PORT=/dev/ttyACM0
+
+# Name of this Makefile (used for "make depend").
+MAKEFILE = Makefile
+
+# Debugging format.
+# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.
+# AVR (extended) COFF requires stabs, plus an avr-objcopy run.
+DEBUG = stabs
+
+# Compiler flag to set the C Standard level.
+# c89 - "ANSI" C
+# gnu89 - c89 plus GCC extensions
+# c99 - ISO C99 standard (not yet fully implemented)
+# gnu99 - c99 plus GCC extensions
+CSTANDARD = -std=gnu99
+
+# Place -D or -U options here
+CDEFS = -DF_CPU=8000000
+
+# Place -I options here
+CINCS =
+
+
+CDEBUG = -g$(DEBUG)
+CWARN = -Wall -Wstrict-prototypes
+CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wl,--relax
+#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
+CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) $(CTUNING) -DSTR_SERIAL_NUMBER=L\"$(NUMBER)\"
+
+
+#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
+
+
+#Additional libraries.
+
+# Minimalistic printf version
+PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
+
+# Floating point printf version (requires MATH_LIB = -lm below)
+PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
+
+PRINTF_LIB =
+
+# Minimalistic scanf version
+SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
+
+# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
+SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
+
+SCANF_LIB =
+
+MATH_LIB = -lm
+
+# External memory options
+
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),
+# used for variables (.data/.bss) and heap (malloc()).
+#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff
+
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),
+# only used for heap (malloc()).
+#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff
+
+EXTMEMOPTS =
+
+#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref
+LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
+
+
+# Programming support using avrdude. Settings and variables.
+
+AVRDUDE_PROGRAMMER = dragon_jtag
+AVRDUDE_PORT = usb
+
+AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
+#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep
+
+
+# Uncomment the following if you want avrdude's erase cycle counter.
+# Note that this counter needs to be initialized first using -Yn,
+# see avrdude manual.
+#AVRDUDE_ERASE_COUNTER = -y
+
+# Uncomment the following if you do /not/ wish a verification to be
+# performed after programming the device.
+AVRDUDE_NO_VERIFY = -V
+
+# Increase verbosity level. Please use this when submitting bug
+# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
+# to submit bug reports.
+#AVRDUDE_VERBOSE = -v -v
+
+AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
+AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)
+
+
+CC = avr-gcc
+OBJCOPY = avr-objcopy
+OBJDUMP = avr-objdump
+SIZE = avr-size
+NM = avr-nm
+AVRDUDE = avrdude
+REMOVE = rm -f
+MV = mv -f
+
+# Define all object files.
+OBJ = $(SRC:.c=.o) $(ASRC:.S=.o)
+
+# Define all listing files.
+LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)
+
+# Combine all necessary flags and optional flags.
+# Add target processor to flags.
+ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)
+ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)
+
+
+# Default target.
+all: build
+
+build: elf hex eep
+
+elf: $(TARGET).elf
+hex: $(TARGET).hex
+eep: $(TARGET).eep
+lss: $(TARGET).lss
+sym: $(TARGET).sym
+
+
+# Program the device.
+program: $(TARGET).hex $(TARGET).eep
+ $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)
+
+
+size:
+ $(SIZE) -C --mcu=$(MCU) $(TARGET).elf
+
+# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
+COFFCONVERT=$(OBJCOPY) --debugging \
+--change-section-address .data-0x800000 \
+--change-section-address .bss-0x800000 \
+--change-section-address .noinit-0x800000 \
+--change-section-address .eeprom-0x810000
+
+
+coff: $(TARGET).elf
+ $(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof
+
+
+extcoff: $(TARGET).elf
+ $(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof
+
+
+.SUFFIXES: .elf .hex .eep .lss .sym
+
+.elf.hex:
+ $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@
+
+.elf.eep:
+ -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
+ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@
+
+# Create extended listing file from ELF output file.
+.elf.lss:
+ $(OBJDUMP) -h -S $< > $@
+
+# Create a symbol table from ELF output file.
+.elf.sym:
+ $(NM) -n $< > $@
+
+
+
+# Link: create ELF output file from object files.
+$(TARGET).elf: $(OBJ)
+ $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)
+
+
+# Compile: create object files from C source files.
+.c.o:
+ $(CC) -c $(ALL_CFLAGS) $< -o $@
+
+
+# Compile: create assembler files from C source files.
+.c.s:
+ $(CC) -S $(ALL_CFLAGS) $< -o $@
+
+
+# Assemble: create object files from assembler source files.
+.S.o:
+ $(CC) -c $(ALL_ASFLAGS) $< -o $@
+
+
+# Target: clean project.
+clean:
+ $(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \
+ $(TARGET).map $(TARGET).sym $(TARGET).lss \
+ $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)
+
+depend:
+ if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \
+ then \
+ sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \
+ $(MAKEFILE).$$$$ && \
+ $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \
+ fi
+ echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \
+ >> $(MAKEFILE); \
+ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)
+
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend program_bootloader program_arduino
+
+program_bootloader: all
+ dfu-programmer $(MCU) erase && dfu-programmer $(MCU) flash $(TARGET).hex && dfu-programmer $(MCU) start
+
+program_arduino: all
+ avrdude -patmega32u4 -cavr109 -P$(PORT) -b57600 -D -Uflash:w:$(TARGET).hex:i
--- /dev/null
+# MDC DCDC Converter Board
+
+This is the firmware for the DCDC MDC Converter Board which serves as the power supply for the MDC layers/chambers.
+
+------------------------------------------------------------------------------------------------------------------------
+
+## Installation
+
+1. make
+2. connect the Board via MicroUSB
+3. RESET the Microcontroller
+4. dfu-programmer atmega32u4 erase --force
+5. make program_bootloader
+
+------------------------------------------------------------------------------------------------------------------------
+
+## Protocol definition
+
+Data format: XuuGcRvvvv (10 characters)
+
+The data format has to end with \n
+
+| Value | Description |
+|---------|---------------------------------------------------------------------------------|
+| X | command (W := write, R := read, A := answer, etc.) |
+| uu | Controllernumber (HEX value) |
+| G | Groupnumber (to talk to all channels, that belong together in one command) |
+| c | Channelnumber in the group (HEX value) |
+| R | register (HEX value) |
+| vvvv | 16 Bit value |
+
+Example: "RF2012FE51\n"
+
+------------------------------------------------------------------------------------------------------------------------
+
+## Groupnumber definition
+
+Each group has two channels (0, 1)
+
+| Groupnumber | Description |
+|---------------|---------------|
+| 0 | DCDC 0 |
+| 1 | DCDC 1 |
+| 2 | DCDC 2 |
+| 3 | DCDC 3 |
+
+
+------------------------------------------------------------------------------------------------------------------------
+
+## Register definition
+
+| Registers | Description |
+|---------------|---------------------------------------------------------------|
+| 0 | DCDC (Group) ON/OFF |
+| 1 | DCDC (Channel) set voltage adjustment resistors |
+| 2 | Voltage V_in (RO) |
+| 3 | Current C_in (RO) |
+| 4 | Temperature (DCDC 2/Group 3) (RO) |
+| 5 | [15:4] Firmware; [3:2] reserved; [1] Switch ; [0] LED (RO) |
+| 6 | Current Offset |
+| 7 | Voltage V_out (RO) |
+| 8 | Current C_out (NA) |
+| 9 | Sense GND (NA) |
+
+NA := not available
+RO := read only
+
+------------------------------------------------------------------------------------------------------------------------
+
+## Usage
+
+The DCDC MDC Converter Board get his operating voltage via MicroUSB and receives messages via the LANTelnetServerBoard with UART Baud rate 57600.
+
+------------------------------------------------------------------------------------------------------------------------
+### Version 1.1, 2022-05-30
--- /dev/null
+#!/usr/bin/perl
+# if ($ENV{'SERVER_SOFTWARE'} =~ /HTTPi/i) {
+# print "HTTP/1.0 200 OK\n";
+# print "Content-type: text/html\r\n\r\n";
+# }
+# else {
+# use lib '..';
+# print "Content-type: text/html\n\n";
+# }
+
+use strict;
+use warnings;
+use Device::SerialPort;
+use IO::Socket;
+use IO::Handle;
+use Fcntl;
+
+use feature 'state';
+use URI::Escape;
+use Data::Dumper;
+use Time::HiRes qw( usleep);
+use Getopt::Long;
+
+my $port;
+my $help;
+my $ser_dev;
+my $isTrbNet = 0;
+Getopt::Long::Configure(qw(gnu_getopt pass_through));
+GetOptions(
+ 'help|h' => \$help,
+ 'device|d=s' => \$ser_dev,
+ ) ;
+
+my $isEthernet = 0;
+my $mode = 0;
+my $ch;
+my $uC;
+my $reg;
+my $rw;
+my $val;
+my $num = 0;
+my $args = scalar @ARGV;
+
+# my $envstring = $ENV{'QUERY_STRING'};
+#
+#
+# my @new_command = split('&',$envstring);
+# my $ser_dev = shift(@new_command);
+
+$ser_dev = "/dev/ttyUSB0" unless defined $ser_dev;
+
+sub PrintAnswer {
+ my ($s) = @_;
+
+ print $s."\n";
+
+}
+
+sub PrintAnswerNice {
+ my ($s) = @_;
+ my $FSR = 0.002; #Full Sclae Range is set to +-4.096V; LSB Size is 2mV
+ if (substr($s,0,1) ne 'A') {die 'not a correct Answer from DCDC board'}
+ my $command = hex(substr($s,5,1));
+ my $ch = hex(substr($s,4,1));
+ my $uC = hex(substr($s,1,2));
+ my $answ = hex(substr($s,6));
+ print $s."\n";
+ print "-----------------------------------------------\n";
+ print "Board: ".$uC."\t";
+ print "Channel: ".$ch."\n";
+ print "-----------------------------------------------\n";
+
+ if ($command == 1) { # resistor adjustment values
+ print "Resistors active: ";
+ print "SEL0 : ".(($answ>> 0)&0xF)."\n";
+ print "\t\t SEL1 : ".(($answ>> 4)&0xF)."\n";
+ print "\t\t SEL2 : ".(($answ>> 8)&0xF)."\n";
+ print "\t\t SEL3 : ".(($answ>>12)&0xF)."\n";
+ }
+ if ($command == 2) { # Voltage
+ $answ = $answ >> 4;
+ my $calc = (($answ&0x7FF)-(($answ>>11)&0x1)*2048)*$FSR*11;# *11 to calculate real input value from voltage divider
+ printf "measured Voltage @ Input : %.3f Volt (RAW: 0x%x)\n", ($calc) , ($answ);
+ }
+ if ($command == 3) { # Current
+ $answ = $answ >> 4;
+ my $calc = (($answ&0x7FF)-(($answ>>11)&0x1)*2048)*$FSR*2; # 500mV/A -> Thats why multiplied by 2
+ printf "measured Current @ Input : %.3f Ampere (RAW: 0x%x)\n", ($calc) , ($answ);
+ }
+ if ($command == 4) { # Temperature
+ $answ = $answ >> 4;
+ my $calc = (($answ&0x7FF)-(($answ>>11)&0x1)*2048)*0.125;
+ printf "measured temperature : %.2f°C (RAW: 0x%x)\n", ($calc) , ($answ);
+ }
+ if ($command == 5) { #Infos
+ print "Firmware : ".($answ>>4)."\n";
+ print "SEL status : ".(($answ>>1) & 0x1)."\n";
+ print "LED status : ".($answ & 0x1)."\n";
+ }
+ if ($command == 6) { #Current Offset
+ $answ = $answ >> 4;
+ my $calc = (($answ&0x7F)-(($answ>>7)&0x1)*128)*$FSR*2; # 500mV/A -> Thats why multiplied by 2
+ printf "set Current offset : %.3f Ampere (RAW: 0x%x)\n", ($calc) , ($answ);
+ }
+
+
+ print "\n";
+
+}
+
+sub SendCmdShort {
+ my ($reg) = @_;
+
+ if($args == 3 || $args == 4) {
+ # microcontroller number in chain
+ my $uC = $ARGV[1];
+ if (substr($uC,0,2) eq "0x") {$uC = hex(substr($uC,2));}
+ if ($uC >= $num) {
+ die "This microcontroller number is not allowed! \n";
+ }
+
+ # channel number
+ my $ch = $ARGV[2];
+ if (substr($ch,0,2) eq "0x") {$ch = hex(substr($ch,2));}
+ if ($ch >= 4) {
+ die "This channel does not exist\n";
+ }
+ my $rw = "R";
+ my $val = 0x0000;
+ my $cmd = sprintf("%s%02x0%01x%01x%04x",$rw,$uC,$ch,$reg,$val&0xFFFF);
+ #print $cmd."\n";
+ PrintAnswerNice(Cmd($cmd)) #Answer without \n
+ } else {
+ die "Not all arguments were specified!\n";
+ }
+
+}
+
+sub Cmd {
+ my ($c) = @_;
+ $c .= "\n";
+ if($isEthernet == 0) {
+ for my $i (0..0) {
+ $port->write($c);
+ my $a = "";
+ for my $j (0..16) {
+ my ($l,$s) = $port->read(12);
+ $a .= $l;
+ if ($l < 1) {next;}
+ #print "DBG".(length $s)."\n";
+ #print $l." ".$s."\n";
+ #if ($s =~ /^\w[a-f0-9]{9}\n/) { return substr($s,0,10);}
+ if ($s =~ /^\w[a-f0-9]{0,11}/) { my $size = length $s; $s = substr($s,0,$size-1); return $s;}
+ usleep(10000);
+ }
+ usleep(50000);
+ #print '.';
+ }
+ }
+ if($isEthernet == 1) {
+ print $port "$c";
+ my $x = "";
+ for my $i (0..10) {
+ $x .= <$port>;
+ if($x && ($x =~ /\n/ || $x =~ /\r/) ) {
+ chomp $x;
+ return $x;
+ }
+ usleep(1000);
+ }
+ }
+ return ;
+}
+
+if ($help || (defined $ARGV[0] && $ARGV[0] =~ /help/)) {
+ print "dcdc.pl [-d DEVICE] reg [uC [CHANNEL [OPERATION [REGISTER [VALUE]]]]]\n";
+ print "dcdc.pl [-d DEVICE] CMD [uC [CHANNEL [VALUE]]]\n\n";
+ print "DEVICE: Either a serial device or an IP number.\n";
+ print "CMD: s: set DCDC setting, g: get DCDC setting,\n";
+ print " t: temperature, v: input voltage, c: input current;\n";
+ print "uC: number of Microcontrolle rin chain. As Hex or Dec\n";
+ print "CHANNEL: Channel number, hex or decimal\n";
+ print "OPERATION: R = Read; W = write\n";
+ print "REGISTER: Register to access (dec or hex)\n";
+ print "VALUE: A 16 Bit value, 4 hex digits or decimal\n";
+ exit;
+}
+
+if ($ser_dev =~ /^(\d+)\.(\d+)\.(\d+)\.(\d+)$/) {
+ $isEthernet = 1;
+ $port = IO::Socket::INET->new(PeerAddr => $ser_dev, PeerPort => 2323, Proto => "tcp", Type => SOCK_STREAM, Timeout => 1)
+ or (print("Device not found") && return);
+ }
+else {
+ $port = new Device::SerialPort($ser_dev);
+ unless ($port) {
+ print "can't open serial interface $ser_dev\n";
+ exit;
+ }
+ $port->user_msg('ON');
+ $port->baudrate(57600);
+ $port->parity("none");
+ $port->databits(8);
+ $port->stopbits(1);
+ $port->handshake("none");
+ $port->read_char_time(0);
+ $port->read_const_time(50);
+ $port->write_settings;
+ }
+
+#Scan for number of Microcontrolles.
+$num = Cmd("S");
+$num = hex(substr($num,1));
+if ($num == 0){ die "Can not access a power switch\n";}
+
+
+
+# microcontroller number in chain
+if($args > 1) {
+ if ($ARGV[0] eq "reg") {$mode = 1;}
+ if ($ARGV[0] eq "s") {$mode = 2;}
+ if ($ARGV[0] eq "g") {$mode = 3;}
+ if ($ARGV[0] eq "t") {$mode = 4;}
+ if ($ARGV[0] eq "v") {$mode = 5;}
+ if ($ARGV[0] eq "c") {$mode = 6;}
+ if ($ARGV[0] eq "i") {$mode = 7;}
+}
+
+if ($mode == 1) {
+
+ # direct register access
+ if($args == 6 || $args == 5) {
+
+ # microcontroller number in chain
+ $uC = $ARGV[1];
+ if (substr($uC,0,2) eq "0x") {$uC = hex(substr($uC,2));}
+ if ($uC >= $num) {
+ die "This microcontroller Number is not allowed! \n";
+ }
+
+ # channel number
+ $ch = $ARGV[2];
+ if (substr($ch,0,2) eq "0x") {$ch = hex(substr($ch,2));}
+ if ($ch >= 4) {
+ die "This channel does not exist\n";
+ }
+
+ # operation R/W
+ $rw = $ARGV[3];
+ if ($rw eq "r" || $rw eq "R") {
+ $rw = "R";
+ } elsif ($rw eq "w" || $rw eq "W") {
+ $rw = "W";
+ if ($args == 5) {
+ die "Not all arguements were specified!\n";
+ }
+ } else {
+ die "This register does not exist\n";
+ }
+
+ # Register
+ $reg = $ARGV[4];
+ if (substr($reg,0,2) eq "0x") {$reg= hex(substr($reg,2));}
+ if ($reg >= 7) {
+ die "This register does not exist\n";
+ }
+
+ # Value
+ if ($rw eq "R") {
+ $val = 0x0;
+ } else {
+ $val = $ARGV[5];
+ }
+ if (substr($val,0,2) eq "0x") {$val= hex(substr($val,2));}
+ if ($val > 0xFFFF) {
+ die "The value is greater than 16 bit! Only 16 bit are allowed\n";
+ }
+ if($reg == 6) {$val *= 16;}
+
+ my $cmd = sprintf("%s%02x0%01x%01x%04x",$rw,$uC,$ch,$reg,$val&0xffff);
+ print $cmd."\n";
+ PrintAnswerNice(Cmd($cmd)) #Answer without \n
+ } else {
+
+ die "Not all arguements were specified!\n";
+ }
+}
+
+# Set settings of DCDC
+if($mode == 2) {
+ if($args == 4) {
+ # microcontroller number in chain
+ $uC = $ARGV[1];
+ if (substr($uC,0,2) eq "0x") {$uC = hex(substr($uC,2));}
+ if ($uC >= $num) {
+ die "This microcontroller Number is not allowed! \n";
+ }
+
+ # channel number
+ $ch = $ARGV[2];
+ if (substr($ch,0,2) eq "0x") {$ch = hex(substr($ch,2));}
+ if ($ch >= 4) {
+ die "This channel does not exist\n";
+ }
+
+ $rw = "W";
+ $reg = 0x1;
+ $val = $ARGV[3];
+ if (substr($val,0,2) eq "0x") {$val= hex(substr($val,2));}
+ if ($val > 0xFFFF) {
+ die "The value is greater than 16 bit! Only 16 bit are allowed\n";
+ }
+ my $cmd = sprintf("%s%02x0%01x%01x%04x",$rw,$uC,$ch,$reg,$val);
+ print $cmd."\n";
+ PrintAnswer(Cmd($cmd)) #Answer without \n
+ } else {
+ die "Not all arguements were specified!\nUSAGE: dcdc.pl s <uC> <channel> <value>\n";
+ }
+}
+
+# Read Setting of DCDC
+if($mode == 3) {SendCmdShort(0x1)}
+
+# Temperature
+if($mode == 4) {SendCmdShort(0x4)}
+
+# Voltage
+if($mode == 5) {SendCmdShort(0x2)}
+
+# Current
+if($mode == 6) {SendCmdShort(0x3)}
+
+# Infos
+if($mode == 7) {SendCmdShort(0x5)}
--- /dev/null
+// #define F_CPU 8000000UL
+
+#include <avr/eeprom.h>
+#include <avr/interrupt.h>
+#include <avr/io.h>
+#include <string.h>
+#include <usb_serial.h>
+#include <util/delay.h>
+
+#define FIRMWARE_VERSION 0x001
+
+/*
+//ADC
+// 0 Sense1 Vin
+// 1 Sense_GND
+// 4 Sense2 Vmon4 DCDC3 CH0
+// 5 Sense3 TEMP_OUT2 DCDC2
+// 6 Sense4 Vmon3 DCDC2 CH0
+// 7 Sense5 Vmon2 DCDC1 CH0
+// 10 Sense6 Vmon1 DCDC0 CH0
+// 11 Sense7 Cin
+
+// PB5 LED DCDC 0 (green)
+// PB6 LED DCDC 1 (green)
+// PC6 LED DCDC 2 (green)
+// PC7 LED DCDC 3 (green)
+// PD6 LED1 (yellow)
+// PD4 LED2 (red)
+
+//PB7 Output enable
+
+//shift register outputs (times 4) Output 0 on MSB, Output 3 on LSB side
+// CTRL10 (MSB)
+// CTRL11
+// CTRL12
+// empty
+// DCDC_EN //DCDC ON/OFF
+// CTRL00
+// CTRL01
+// CTRL02
+
+// | Registers | description |
+// |-----------|--------------------------------------------------------------|
+// | 0 | DCDC ON/OFF |
+// | 1 | DCDC set voltage adjustment resistors |
+// | 2 | Voltage V_in (RO) |
+// | 3 | Current C_in (RO) |
+// | 4 | Temperature (RO) |
+// | 5 | [15:4] Firmware; [3:2] reserved; [1] Switch ; [0] LED (RO) |
+// | 6 | Current Offset |
+// | 7 | Voltage V_out (RO) |
+// | 8 | Current C_out (NA) |
+// | 9 | Sense GND (NA) |
+
+// **Data format:** *XuuGcRvvvv*
+// **Data format:** *X000cRvvvv*
+*/
+
+#define ISMYADDR() (rxbuf[1] == '0' && rxbuf[2] == '0')
+
+#define LED1_ON() PORTD |= (1 << PD6)
+#define LED1_OFF() PORTD &= ~(1 << PD6)
+
+#define LED2_ON() PORTD |= (1 << PD4)
+#define LED2_OFF() PORTD &= ~(1 << PD4)
+
+#define LED_CH0_ON() PORTB |= (1 << PB5)
+#define LED_CH0_OFF() PORTB &= ~(1 << PB5)
+#define LED_CH1_ON() PORTB |= (1 << PB6)
+#define LED_CH1_OFF() PORTB &= ~(1 << PB6)
+#define LED_CH2_ON() PORTC |= (1 << PC6)
+#define LED_CH2_OFF() PORTC &= ~(1 << PC6)
+#define LED_CH3_ON() PORTC |= (1 << PC7)
+#define LED_CH3_OFF() PORTC &= ~(1 << PC7)
+
+#define SHCP_HIGH() PORTB |= (1 << PB1) // SCLK
+#define SHCP_LOW() PORTB &= ~(1 << PB1)
+
+#define STCP_HIGH() PORTB |= (1 << PB3)
+#define STCP_LOW() PORTB &= ~(1 << PB3)
+
+#define SHIFT_DATA_LOW() PORTB |= (1 << PB2) // MOSI
+#define SHIFT_DATA_HIGH() PORTB &= ~(1 << PB2)
+
+#define SHIFT_EN_OUTPUT() PORTB &= ~(1 << PB7)
+#define SHIFT_DIS_OUTPUT() PORTB |= (1 << PB7)
+
+// declaration of needed variables
+
+uint16_t time;
+
+uint8_t rxcnt = 0, txpoint = 0;
+uint8_t rxbuf[11];
+uint8_t txbuf[12];
+uint16_t adc[16]; // raw values from ADC
+uint16_t V_in = 0;
+uint16_t C_in = 0;
+uint16_t temp = 0;
+uint16_t information = 1;
+int8_t curr_offset = 0;
+uint32_t shift_register;
+uint16_t read_DCDC_status;
+uint16_t read_setting;
+uint8_t isMaster = 0;
+uint16_t V_out;
+uint16_t C_out;
+uint16_t GND;
+
+uint8_t nib_to_hex(uint16_t in, uint8_t nib) {
+ // convert integer or nibbles into hex value
+ uint8_t t = (in >> (nib * 4)) & 0xF;
+ if (t <= 9) {
+ return t + 0x30;
+ }
+ return t - 10 + 0x61;
+}
+
+uint8_t hex_to_int(uint8_t h) {//assumes valid number
+ // convert hex value to integer
+ if (h < 0x40) return h - 0x30;
+ if (h < 0x50) return h - 0x41 + 10;
+ return h - 0x61 + 10;
+}
+
+void send_answer_buf(uint8_t *b) { UCSR1B |= (1 << UDRIE1); }
+ // activate transmit interupt "ISR(USART1_UDRE_vect)"
+
+void send_answer_hex(uint8_t *rxbuf, uint16_t v) {
+ // modeling the answer message in hex value
+ txbuf[0] = 'A';
+ txbuf[1] = rxbuf[1];
+ txbuf[2] = rxbuf[2];
+ txbuf[3] = rxbuf[3]; // Switch deactivated
+ txbuf[4] = rxbuf[4];
+ txbuf[5] = rxbuf[5];
+ txbuf[6] = nib_to_hex(v, 3);
+ txbuf[7] = nib_to_hex(v, 2);
+ txbuf[8] = nib_to_hex(v, 1);
+ txbuf[9] = nib_to_hex(v, 0);
+ txbuf[10] = '\n';
+ txbuf[11] = 0; //string ends with zero
+ send_answer_buf(txbuf);
+}
+
+void sub1(uint8_t *c1, uint8_t *c2) {
+ // need for chain boards to count down the board number
+ uint8_t b = hex_to_int(*c1) * 16 + hex_to_int(*c2);
+ b -= 1;
+ *c1 = nib_to_hex(b, 1);
+ *c2 = nib_to_hex(b, 0);
+}
+
+void forward_msg(uint8_t i) {
+ // need for chain boards to send the command to next board
+ sub1(&rxbuf[1], &rxbuf[2]);
+ memcpy((uint8_t *)txbuf, (uint8_t *)rxbuf, i);
+ txbuf[i] = 0;
+ send_answer_buf(txbuf);
+}
+
+uint8_t is_my_address(uint8_t s) {
+ // need for chain boards and handle to communicate to the right board
+ if (ISMYADDR()) {
+ // rxbuf[2] -= '0'; // write number to buffer, instead of ascii.
+ return 1;
+ } else {
+ forward_msg(s);
+ return 0;
+ }
+}
+
+void setVoltages(void) {
+ // need to change the voltage by dis/enable resistor with the shiftregister "NPIC6C596A"
+ cli();
+ STCP_LOW();
+ uint32_t mask = (uint32_t)0x80000000;
+ for (int8_t i = 31; i >= 0; i--) {
+ SHCP_LOW();
+ if (shift_register & mask)
+ SHIFT_DATA_HIGH();
+ else
+ SHIFT_DATA_LOW();
+ SHCP_HIGH();
+ mask >>= 1;
+ }
+ SHCP_LOW();
+ SHIFT_DATA_LOW();
+ // Load to Output Register:
+ STCP_HIGH();
+ STCP_HIGH();
+ STCP_LOW();
+ SHIFT_EN_OUTPUT();
+ sei();
+}
+
+void switchDCDC(uint8_t group, uint8_t val) {
+ // de/activate the dcdc themself
+ if (val == 0) {
+ shift_register &= ~((uint32_t)1 << (4 + group * 8)); // DCDC off
+ if (group == 0) {
+ LED_CH0_OFF();
+ } else if (group == 1) {
+ LED_CH1_OFF();
+ } else if (group == 2) {
+ LED_CH2_OFF();
+ } else if (group == 3) {
+ LED_CH3_OFF();
+ }
+ }
+ else {
+ shift_register |= ((uint32_t)1 << (4 + group * 8)); // DCDC on
+ if (group == 0) {
+ LED_CH0_ON();
+ } else if (group == 1) {
+ LED_CH1_ON();
+ } else if (group == 2) {
+ LED_CH2_ON();
+ } else if (group == 3) {
+ LED_CH3_ON();
+ }
+ }
+ setVoltages();
+}
+
+void setDCDC(uint8_t group, uint8_t chan, uint8_t val) {
+ // enable resistor of the voltage devider to change the feedback line to control the dcdc voltage output
+ // DCDC CH0
+ if (chan == 0 && val <= 7) {
+ val = 7 - val;
+ shift_register &= ~(((uint32_t)1 << ((5 + group * 8) + 2)) | ((uint32_t)1 << ((5 + group * 8) + 1)) | ((uint32_t)1 << (5 + group * 8))); // clear bitpositon f.e. group = 0 -> 7,6,5
+ val = ((val >> 2) & 1) | (val & 2)| ((val <<2) & 4); //for lineal increase
+ shift_register |= (uint32_t)val << (group * 8 + 5);
+ }
+ // DCDC CH1
+ if (chan == 1 && val <= 7) {
+ val = 7 - val;
+ shift_register &= ~(((uint32_t)1 << ((group * 8) + 2)) | ((uint32_t)1 << ((group * 8) + 1)) | ((uint32_t)1 << (group * 8))); // clear bitpositon f.e. group = 0 -> 2,1,0
+ val = ((val >> 2) & 1) | (val & 2)| ((val <<2) & 4);
+ shift_register |= (uint32_t)val << (group * 8);
+ }
+
+ setVoltages();
+}
+
+void setInfo(uint8_t chan, uint8_t val) {
+ if ((val & 0x1) == 1) {LED1_ON(); information |= (1 << 0);} // LED1 on
+ if ((val & 0x1) == 0) {LED1_OFF(); information &= ~(1 << 0);} // LED1 off
+
+ if (((val >> 1) & 0x1) == 1) {LED2_ON(); information |= (1 << 1);} // LED2 on
+ if (((val >> 1) & 0x1) == 0) {LED2_OFF(); information &= ~(1 << 1);} // LED2 off
+
+ information |= (FIRMWARE_VERSION << 4);
+}
+
+/*
+// Data: XuuGcRvvvv
+// Switch deactivated
+// X - command (write: W, read: R, answer: A etc.)
+// uu - Controllernumber (Hex value)
+// G - Groupnumber (to talk to all channels, that belong together,
+in one command.)
+// c - channelnumber in the group (Hex value)
+// R - register (Hex value)
+// vvvv - 16 Bit value
+//
+// All in all 10 characters
+// RF2012FE51
+//
+// close with a "\n"
+// e.g. "RF2012FE51\n"
+//
+//
+//
+// | Registers | description |
+// |-----------|--------------------------------------------------------------|
+// | 0 | DCDC ON/OFF |
+// | 1 | DCDC set voltage adjustment resistors |
+// | 2 | Voltage V_in (RO) |
+// | 3 | Current C_in (RO) |
+// | 4 | Temperature (RO) |
+// | 5 | [15:4] Firmware; [3:2] reserved; [1] Switch ; [0] LED (RO) |
+// | 6 | Current Offset |
+// | 7 | Voltage V_out (RO) |
+// | 8 | Current C_out (NA) |
+// | 9 | Sense GND (RO) |
+*/
+
+void getdata(uint8_t buf) {
+ // handle the incoming comand and call the correct function
+ if (rxcnt != 0 || (buf == 'A' || buf == 'W' || buf == 'R')) {
+ rxbuf[rxcnt++] = buf;
+ }
+ if (buf == '\n' || buf == '\r') { // End of Command
+ if (rxbuf[0] == 'A') {
+ // answer
+ memcpy((uint8_t *)txbuf, (uint8_t *)rxbuf, 10);
+ txbuf[11] = 0;
+ send_answer_buf(txbuf);
+ } else if (rxbuf[0] == 'S') { // Scann of chain, returns number of boards
+ txbuf[0] = 'S';
+ uint8_t length = rxcnt - 2; // Length of Counter
+ // read current counter value
+ uint32_t cnt = 0;
+ if (length == 0) {
+ length = 1;
+ } else {
+ uint32_t base = 1;
+ for (uint8_t i = length; i > 0; i--) {
+
+ cnt += hex_to_int(rxbuf[i]) * base;
+ base *= 16;
+ }
+ }
+ // inc counter value
+ cnt++;
+ // send to next uC
+ if ((cnt % 16) == 0)
+ length++;
+ for (uint8_t i = length; i > 0; i--) {
+ txbuf[i] = nib_to_hex(cnt, length - i);
+ }
+ if (length > 8)
+ length = 8; // skip to keep a clean ending of message
+ txbuf[length + 1] = 10;
+ txbuf[length + 2] = 0;
+ send_answer_buf(txbuf);
+ rxcnt = 0;
+ } else if (rxcnt == 11 && is_my_address(10)) { // message is for this uC
+// } else if (is_my_address(10)) { //answer 0x00d1 works with this line
+ if (rxbuf[0] == 'W') {
+ // write
+ switch (hex_to_int(rxbuf[5])) {
+
+ // set DCDC ON/OFF
+ case 0:
+ if (hex_to_int(rxbuf[3]) < 4) {
+ switchDCDC(hex_to_int(rxbuf[3]), hex_to_int(rxbuf[9]));
+ eeprom_update_byte((uint8_t *)0x21, shift_register);
+ eeprom_update_byte((uint8_t *)0x22, shift_register >> 8);
+ eeprom_update_byte((uint8_t *)0x23, shift_register >> 16);
+ eeprom_update_byte((uint8_t *)0x24, shift_register >> 24);
+ }
+ send_answer_hex(&rxbuf[0], 0x00d1);
+ break;
+
+ // set voltage of DCDC-Converter
+ case 1:
+ if (hex_to_int(rxbuf[3]) < 4) {
+ setDCDC(hex_to_int(rxbuf[3]), hex_to_int(rxbuf[4]), hex_to_int(rxbuf[9]));
+ eeprom_update_byte((uint8_t *)0x21, shift_register);
+ eeprom_update_byte((uint8_t *)0x22, shift_register >> 8);
+ eeprom_update_byte((uint8_t *)0x23, shift_register >> 16);
+ eeprom_update_byte((uint8_t *)0x24, shift_register >> 24);
+ }
+ send_answer_hex(&rxbuf[0], 0x00d1);
+ break;
+
+ // set information
+ case 5:
+ setInfo(hex_to_int(rxbuf[4]), hex_to_int(rxbuf[9]));
+ send_answer_hex(&rxbuf[0], information);
+ break;
+
+ // set current offset
+ case 6:
+ curr_offset = (hex_to_int(rxbuf[7]) * 16 + hex_to_int(rxbuf[8])) & 0xFF;
+ eeprom_update_byte((uint8_t *)0x26, curr_offset);
+ send_answer_hex(&rxbuf[0], curr_offset * 16);
+ break;
+
+ default:
+ send_answer_hex(&rxbuf[0], 0xFFFF);
+ break;
+ }
+ }
+
+ if (rxbuf[0] == 'R') {
+ // read
+
+ // get DCDC status
+ if (hex_to_int(rxbuf[5]) == 0) {
+ uint16_t read_DCDC_status = 0xFFFF;
+ // DCDC Status CH0
+ if (hex_to_int(rxbuf[4]) == 0) {
+ read_DCDC_status = ((shift_register >> (4 + hex_to_int(rxbuf[3]) * 8)) & 1);
+ }
+
+ send_answer_hex(&rxbuf[0], read_DCDC_status);
+ }
+
+ // get voltage resistors selection
+ if (hex_to_int(rxbuf[5]) == 1) {
+ uint16_t read_setting = 0xFFFF;
+ // CH0
+ if (hex_to_int(rxbuf[4]) == 0) {
+ read_setting = 7 - ((shift_register >> (hex_to_int(rxbuf[3]) * 8 + 5)) & 7);
+ }
+ // CH1
+ if (hex_to_int(rxbuf[4]) == 1) {
+ read_setting = 7 - ((shift_register >> (hex_to_int(rxbuf[3]) * 8)) & 7);
+ }
+ send_answer_hex(&rxbuf[0], read_setting);
+ }
+
+ // get voltage V_in
+ if (hex_to_int(rxbuf[5]) == 2) {
+ V_in = (5 * adc[0]) / 2;
+ send_answer_hex(&rxbuf[0], V_in);
+ }
+
+ // get current C_in
+ if (hex_to_int(rxbuf[5]) == 3) {
+ C_in = (5 * adc[11]) / 2;
+ send_answer_hex(&rxbuf[0], C_in);
+ }
+
+ // get temperature
+ if (hex_to_int(rxbuf[5]) == 4) {
+ temp = adc[5];
+ send_answer_hex(&rxbuf[0], temp);
+ }
+
+ // get information
+ if (hex_to_int(rxbuf[5]) == 5) {
+ information |= (FIRMWARE_VERSION << 4);
+ send_answer_hex(&rxbuf[0], information);
+ }
+
+ // get current offset
+ if (hex_to_int(rxbuf[5]) == 6) {
+ send_answer_hex(&rxbuf[0], curr_offset * 16);
+ }
+
+ // get voltage V_out
+ if (hex_to_int(rxbuf[5]) == 7) {
+
+ // DCDC 0
+ if (hex_to_int(rxbuf[3]) == 0) {
+ V_out = (5 * adc[10]) / 2; // 2.5 (5/2) stepsize of adc
+ send_answer_hex(&rxbuf[0], V_out);
+ }CSR1B |= (1 << UDRIE1); }
+ // DCDC 1
+ if (hex_to_int(rxbuf[3]) == 1) {
+ V_out = (5 * adc[7]) / 2;
+ send_answer_hex(&rxbuf[0], V_out);
+ }
+ // DCDC 2
+ if (hex_to_int(rxbuf[3]) == 2) {
+ V_out = (5 * adc[6]) / 2;
+ send_answer_hex(&rxbuf[0], V_out);
+ }
+ // DCDC 3
+ if (hex_to_int(rxbuf[3]) == 2) {
+ V_out = (5 * adc[4]) / 2;
+ send_answer_hex(&rxbuf[0], V_out);
+ }
+ }
+ /*
+ // get current C_out
+ if (hex_to_int(rxbuf[5]) == 8) {
+ //LDO CH1
+ if (hex_to_int(rxbuf[4]) == 1) {
+ C_out = adc[13];
+ }
+ //LDO CH0
+ if (hex_to_int(rxbuf[4]) == 0) {
+ C_out = adc[3];
+ }
+ send_answer_hex(&rxbuf[0],C_out);
+ }
+ */
+
+ // get GND
+ if (hex_to_int(rxbuf[5]) == 9) {
+ GND = (5 * adc[1]) / 2;
+ ;
+ send_answer_hex(&rxbuf[0], GND);
+ }
+ }
+ }
+ if (rxcnt >= 11 || buf == '\n' || buf == '\r') {
+ rxcnt = 0;
+ }
+ }
+}
+
+
+ISR(ADC_vect) {
+ // interupt for reading adc and save the values
+ static uint8_t channel = 0;
+ adc[channel] = ADC;
+
+ if (channel == 1) channel = 4;
+ else if (channel == 7) channel = 13;
+ else if (channel == 13) channel = 0;
+ else channel++;
+
+ ADMUX &= 0xe0;
+ ADMUX |= (channel & 0xf);
+ if (channel == 13)
+ ADCSRB |= (1 << MUX5);
+ else
+ ADCSRB &= ~(1 << MUX5);
+
+ ADCSRA |= (1 << ADSC);
+}
+
+ISR(USART1_RX_vect) {
+ // interupt for incoming comand
+ uint8_t buf = UDR1;
+ if (isMaster == 0) {
+ getdata(buf);
+ } else {
+ // usb_serial_putchar(buf);
+ }
+}
+
+ISR(USART1_UDRE_vect) {
+ // interupt for transmitting answer message
+ if (txbuf[txpoint] != 0)
+ UDR1 = txbuf[txpoint++];
+ if (txpoint > 11 || txbuf[txpoint] == 0) {
+ txpoint = 0;
+ UCSR1B &= ~(1 << UDRIE1); // deactivate Transmit
+ }
+}
+
+ISR(TIMER0_OVF_vect) {
+ // interupt for time, actual only need for watchdoc if programm crashed as reset function
+ time++;
+ asm volatile("wdr");
+}
+
+__attribute__((naked)) void main(void) {
+
+ CLKPR = (1 << CLKPCE); // prescaler 2 = 8 MHz
+ CLKPR = (1 << CLKPS0); // prescaler 2
+
+ // Configure ports
+
+ MCUCR |= (1 << JTD);
+ MCUCR |= (1 << JTD); // yes, twice
+
+ //--------------------------------------------------------//
+ // DDRx : 0 = Input; 1 = Output
+ // PORTx : Input -> 0: no PullUp 1: Pullup
+ // Output -> 0: LOW 1: HIGH
+
+ PORTB = 0b00000000;
+ DDRB = 0b11101110;
+
+ PORTC = 0b00000000;
+ DDRC = 0b11000000;
+
+ PORTD = 0b00001100;
+ DDRD = 0b01011000;
+
+ PORTE = 0b00000000;
+ DDRE = 0b00000000;
+
+ PORTF = 0b00000000;
+ DDRF = 0b00000000;
+
+ // Timer0 at 30 Hz overflow for ADC control
+ TCCR0B = (5 << CS00);
+ TIMSK0 = (1 << TOIE0); // Overflow interrupt`
+
+ // Init USART
+ UCSR1A = (1 << U2X1); // Double Speed Mode
+ // UCSR1A = (0 << U2X1); // Single Speed Mode
+ UCSR1B = (1 << RXCIE1) | (0 << TXCIE1) | (0 << RXEN1) | (1 << TXEN1);
+ UCSR1C = (3 << UCSZ10); // 8 Bit
+ UBRR1 = 0x10; // 38k4 (SSM) //0x33; // 38k4 //0x10; //57600
+ _delay_ms(10);
+ UCSR1B |= (1 << RXEN1);
+
+ // ADMUX = (3 << REFS0); //reference 2.56V internal
+ // ADCSRA = (1 << ADEN) | (0 << ADSC) | (1 << ADIE) | (7 << ADPS0);
+ // //enable, start, irq, /128 DIDR0 = 0b11111111; DIDR2 = (1 << ADC13D);
+ // ADMUX &= 0xe0; ADMUX |= 1; ADCSRB |= (1<<MUX5);
+ // ADCSRA |= (1<<ADSC);
+
+ // eeprom
+ shift_register = eeprom_read_byte((uint8_t *)0x21) |
+ eeprom_read_byte((uint8_t *)0x22) << 8 |
+ (uint32_t)eeprom_read_byte((uint8_t *)0x23) << 16 |
+ (uint32_t)eeprom_read_byte((uint8_t *)0x24) << 24;
+ // to read dcdc switch to control the channel LEDs
+ if (shift_register & (uint32_t)1 << 4) {
+ LED_CH0_ON();
+ }
+ if (shift_register & (uint32_t)1 << 12) {
+ LED_CH1_ON();
+ }
+ if (shift_register & (uint32_t)1 << 20) {
+ LED_CH2_ON();
+ }
+ if (shift_register & (uint32_t)1 << 28) {
+ LED_CH3_ON();
+ }
+
+ // curr_offset = eeprom_read_byte((uint8_t*)0x26);
+
+// shift_register = 0xffffffff; //default value
+ setVoltages();
+ LED1_ON(); // board status - ready to use
+
+ /*
+ * Shift Register
+ Group | Channel | Position | Variable
+ ---------------------------------------
+ 0 | 1 | 0 | CTRL10
+ | 1 | 1 | CTRL11
+ | 1 | 2 | CTRL12
+ ---------------------------------
+ | | 3 | EMPTY
+ | | 4 | DCDC_EN
+ ---------------------------------
+ | 0 | 5 | CTRL00
+ | 0 | 6 | CTRL01
+ | 0 | 7 | CTRL02
+ ---------------------------------------
+ 1 | 1 | 8 | CTRL10
+ | 1 | 9 | CTRL11
+ | 1 | 10 | CTRL12
+ ---------------------------------
+ | | 11 | EMPTY
+ | | 12 | DCDC_EN
+ ---------------------------------
+ | 0 | 13 | CTRL00
+ | 0 | 14 | CTRL01
+ | 0 | 15 | CTRL02
+ ---------------------------------------
+ 2 | 1 | 16 | CTRL10
+ | 1 | 17 | CTRL11
+ | 1 | 18 | CTRL12
+ ---------------------------------
+ | | 19 | EMPTY
+ | | 20 | DCDC_EN
+ ---------------------------------
+ | 0 | 21 | CTRL00
+ | 0 | 22 | CTRL01
+ | 0 | 23 | CTRL02
+ ---------------------------------------
+ 3 | 1 | 24 | CTRL10
+ | 1 | 25 | CTRL11
+ | 1 | 26 | CTRL12
+ ---------------------------------
+ | | 27 | EMPTY
+ | | 28 | DCDC_EN
+ ---------------------------------
+ | 0 | 29 | CTRL00
+ | 0 | 30 | CTRL01
+ | 0 | 31 | CTRL02
+ */
+
+ // SHIFT_EN_OUTPUT();// Enable output of shift register to mosfet
+ // sei();
+
+ uint16_t lasttime = 0;
+
+ while (1) {
+ // int n = usb_serial_getchar();
+ // if (n >= 0) {
+ // isMaster = 1;
+ // //SELECT_MASTER();
+ // getdata(n);
+ // }
+
+ if ((time != lasttime)) {
+ }
+ lasttime = time;
+ }
+}
--- /dev/null
+/* USB Serial Example for Teensy USB Development Board
+ * http://www.pjrc.com/teensy/usb_serial.html
+ * Copyright (c) 2008,2010,2011 PJRC.COM, LLC
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+// Version 1.0: Initial Release
+// Version 1.1: support Teensy++
+// Version 1.2: fixed usb_serial_available
+// Version 1.3: added transmit bandwidth test
+// Version 1.4: added usb_serial_write
+// Version 1.5: add support for Teensy 2.0
+// Version 1.6: fix zero length packet bug
+// Version 1.7: fix usb_serial_set_control
+
+#define USB_SERIAL_PRIVATE_INCLUDE
+#include "usb_serial.h"
+
+
+/**************************************************************************
+ *
+ * Configurable Options
+ *
+ **************************************************************************/
+
+// You can change these to give your code its own name. On Windows,
+// these are only used before an INF file (driver install) is loaded.
+#define STR_MANUFACTURER L"Xmatter"
+#define STR_PRODUCT L"DCDC_Test"
+
+// All USB serial devices are supposed to have a serial number
+// (according to Microsoft). On windows, a new COM port is created
+// for every unique serial/vendor/product number combination. If
+// you program 2 identical boards with 2 different serial numbers
+// and they are assigned COM7 and COM8, each will always get the
+// same COM port number because Windows remembers serial numbers.
+//
+// On Mac OS-X, a device file is created automatically which
+// incorperates the serial number, eg, /dev/cu-usbmodem12341
+//
+// Linux by default ignores the serial number, and creates device
+// files named /dev/ttyACM0, /dev/ttyACM1... in the order connected.
+// Udev rules (in /etc/udev/rules.d) can define persistent device
+// names linked to this serial number, as well as permissions, owner
+// and group settings.
+//#define STR_SERIAL_NUMBER L ## NUMBER
+
+
+// Mac OS-X and Linux automatically load the correct drivers. On
+// Windows, even though the driver is supplied by Microsoft, an
+// INF file is needed to load the driver. These numbers need to
+// match the INF file.
+#define VENDOR_ID 0x16C0
+#define PRODUCT_ID 0x047A
+
+// When you write data, it goes into a USB endpoint buffer, which
+// is transmitted to the PC when it becomes full, or after a timeout
+// with no more writes. Even if you write in exactly packet-size
+// increments, this timeout is used to send a "zero length packet"
+// that tells the PC no more data is expected and it should pass
+// any buffered data to the application that may be waiting. If
+// you want data sent immediately, call usb_serial_flush_output().
+#define TRANSMIT_FLUSH_TIMEOUT 5 /* in milliseconds */
+
+// If the PC is connected but not "listening", this is the length
+// of time before usb_serial_getchar() returns with an error. This
+// is roughly equivilant to a real UART simply transmitting the
+// bits on a wire where nobody is listening, except you get an error
+// code which you can ignore for serial-like discard of data, or
+// use to know your data wasn't sent.
+#define TRANSMIT_TIMEOUT 25 /* in milliseconds */
+
+// USB devices are supposed to implment a halt feature, which is
+// rarely (if ever) used. If you comment this line out, the halt
+// code will be removed, saving 116 bytes of space (gcc 4.3.0).
+// This is not strictly USB compliant, but works with all major
+// operating systems.
+//#define SUPPORT_ENDPOINT_HALT
+
+
+
+/**************************************************************************
+ *
+ * Endpoint Buffer Configuration
+ *
+ **************************************************************************/
+
+// These buffer sizes are best for most applications, but perhaps if you
+// want more buffering on some endpoint at the expense of others, this
+// is where you can make such changes. The AT90USB162 has only 176 bytes
+// of DPRAM (USB buffers) and only endpoints 3 & 4 can double buffer.
+
+#define ENDPOINT0_SIZE 16
+#define CDC_ACM_ENDPOINT 2
+#define CDC_RX_ENDPOINT 3
+#define CDC_TX_ENDPOINT 4
+#if defined(__AVR_AT90USB162__)
+#define CDC_ACM_SIZE 16
+#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
+#define CDC_RX_SIZE 32
+#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
+#define CDC_TX_SIZE 32
+#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
+#else
+#define CDC_ACM_SIZE 16
+#define CDC_ACM_BUFFER EP_SINGLE_BUFFER
+#define CDC_RX_SIZE 64
+#define CDC_RX_BUFFER EP_DOUBLE_BUFFER
+#define CDC_TX_SIZE 64
+#define CDC_TX_BUFFER EP_DOUBLE_BUFFER
+#endif
+
+static const uint8_t PROGMEM endpoint_config_table[] = {
+ 0,
+ 1, EP_TYPE_INTERRUPT_IN, EP_SIZE(CDC_ACM_SIZE) | CDC_ACM_BUFFER,
+ 1, EP_TYPE_BULK_OUT, EP_SIZE(CDC_RX_SIZE) | CDC_RX_BUFFER,
+ 1, EP_TYPE_BULK_IN, EP_SIZE(CDC_TX_SIZE) | CDC_TX_BUFFER
+};
+
+
+/**************************************************************************
+ *
+ * Descriptor Data
+ *
+ **************************************************************************/
+
+// Descriptors are the data that your computer reads when it auto-detects
+// this USB device (called "enumeration" in USB lingo). The most commonly
+// changed items are editable at the top of this file. Changing things
+// in here should only be done by those who've read chapter 9 of the USB
+// spec and relevant portions of any USB class specifications!
+
+static const uint8_t PROGMEM device_descriptor[] = {
+ 18, // bLength
+ 1, // bDescriptorType
+ 0x00, 0x02, // bcdUSB
+ 2, // bDeviceClass
+ 0, // bDeviceSubClass
+ 0, // bDeviceProtocol
+ ENDPOINT0_SIZE, // bMaxPacketSize0
+ LSB(VENDOR_ID), MSB(VENDOR_ID), // idVendor
+ LSB(PRODUCT_ID), MSB(PRODUCT_ID), // idProduct
+ 0x00, 0x01, // bcdDevice
+ 1, // iManufacturer
+ 2, // iProduct
+ 3, // iSerialNumber
+ 1 // bNumConfigurations
+};
+
+#define CONFIG1_DESC_SIZE (9+9+5+5+4+5+7+9+7+7)
+static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
+ // configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
+ 9, // bLength;
+ 2, // bDescriptorType;
+ LSB(CONFIG1_DESC_SIZE), // wTotalLength
+ MSB(CONFIG1_DESC_SIZE),
+ 2, // bNumInterfaces
+ 1, // bConfigurationValue
+ 0, // iConfiguration
+ 0xC0, // bmAttributes
+ 50, // bMaxPower
+ // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
+ 9, // bLength
+ 4, // bDescriptorType
+ 0, // bInterfaceNumber
+ 0, // bAlternateSetting
+ 1, // bNumEndpoints
+ 0x02, // bInterfaceClass
+ 0x02, // bInterfaceSubClass
+ 0x01, // bInterfaceProtocol
+ 0, // iInterface
+ // CDC Header Functional Descriptor, CDC Spec 5.2.3.1, Table 26
+ 5, // bFunctionLength
+ 0x24, // bDescriptorType
+ 0x00, // bDescriptorSubtype
+ 0x10, 0x01, // bcdCDC
+ // Call Management Functional Descriptor, CDC Spec 5.2.3.2, Table 27
+ 5, // bFunctionLength
+ 0x24, // bDescriptorType
+ 0x01, // bDescriptorSubtype
+ 0x01, // bmCapabilities
+ 1, // bDataInterface
+ // Abstract Control Management Functional Descriptor, CDC Spec 5.2.3.3, Table 28
+ 4, // bFunctionLength
+ 0x24, // bDescriptorType
+ 0x02, // bDescriptorSubtype
+ 0x06, // bmCapabilities
+ // Union Functional Descriptor, CDC Spec 5.2.3.8, Table 33
+ 5, // bFunctionLength
+ 0x24, // bDescriptorType
+ 0x06, // bDescriptorSubtype
+ 0, // bMasterInterface
+ 1, // bSlaveInterface0
+ // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
+ 7, // bLength
+ 5, // bDescriptorType
+ CDC_ACM_ENDPOINT | 0x80, // bEndpointAddress
+ 0x03, // bmAttributes (0x03=intr)
+ CDC_ACM_SIZE, 0, // wMaxPacketSize
+ 64, // bInterval
+ // interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
+ 9, // bLength
+ 4, // bDescriptorType
+ 1, // bInterfaceNumber
+ 0, // bAlternateSetting
+ 2, // bNumEndpoints
+ 0x0A, // bInterfaceClass
+ 0x00, // bInterfaceSubClass
+ 0x00, // bInterfaceProtocol
+ 0, // iInterface
+ // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
+ 7, // bLength
+ 5, // bDescriptorType
+ CDC_RX_ENDPOINT, // bEndpointAddress
+ 0x02, // bmAttributes (0x02=bulk)
+ CDC_RX_SIZE, 0, // wMaxPacketSize
+ 0, // bInterval
+ // endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
+ 7, // bLength
+ 5, // bDescriptorType
+ CDC_TX_ENDPOINT | 0x80, // bEndpointAddress
+ 0x02, // bmAttributes (0x02=bulk)
+ CDC_TX_SIZE, 0, // wMaxPacketSize
+ 0 // bInterval
+};
+
+// If you're desperate for a little extra code memory, these strings
+// can be completely removed if iManufacturer, iProduct, iSerialNumber
+// in the device desciptor are changed to zeros.
+struct usb_string_descriptor_struct {
+ uint8_t bLength;
+ uint8_t bDescriptorType;
+ int16_t wString[];
+};
+static const struct usb_string_descriptor_struct PROGMEM string0 = {
+ 4,
+ 3,
+ {0x0409}
+};
+static const struct usb_string_descriptor_struct PROGMEM string1 = {
+ sizeof(STR_MANUFACTURER),
+ 3,
+ STR_MANUFACTURER
+};
+static const struct usb_string_descriptor_struct PROGMEM string2 = {
+ sizeof(STR_PRODUCT),
+ 3,
+ STR_PRODUCT
+};
+static const struct usb_string_descriptor_struct PROGMEM string3 = {
+ sizeof(STR_SERIAL_NUMBER),
+ 3,
+ STR_SERIAL_NUMBER
+};
+
+// This table defines which descriptor data is sent for each specific
+// request from the host (in wValue and wIndex).
+static const struct descriptor_list_struct {
+ uint16_t wValue;
+ uint16_t wIndex;
+ const uint8_t *addr;
+ uint8_t length;
+} PROGMEM descriptor_list[] = {
+ {0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)},
+ {0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},
+ {0x0300, 0x0000, (const uint8_t *)&string0, 4},
+ {0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_MANUFACTURER)},
+ {0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_PRODUCT)},
+ {0x0303, 0x0409, (const uint8_t *)&string3, sizeof(STR_SERIAL_NUMBER)}
+};
+#define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct))
+
+
+/**************************************************************************
+ *
+ * Variables - these are the only non-stack RAM usage
+ *
+ **************************************************************************/
+
+// zero when we are not configured, non-zero when enumerated
+static volatile uint8_t usb_configuration=0;
+
+// the time remaining before we transmit any partially full
+// packet, or send a zero length packet.
+static volatile uint8_t transmit_flush_timer=0;
+static uint8_t transmit_previous_timeout=0;
+
+// serial port settings (baud rate, control signals, etc) set
+// by the PC. These are ignored, but kept in RAM.
+static uint8_t cdc_line_coding[7]={0x00, 0xE1, 0x00, 0x00, 0x00, 0x00, 0x08};
+static uint8_t cdc_line_rtsdtr=0;
+
+
+/**************************************************************************
+ *
+ * Public Functions - these are the API intended for the user
+ *
+ **************************************************************************/
+
+// initialize USB serial
+void usb_init(void)
+{
+ HW_CONFIG();
+ USB_FREEZE(); // enable USB
+ PLL_CONFIG(); // config PLL, 16 MHz xtal
+ while (!(PLLCSR & (1<<PLOCK))) ; // wait for PLL lock
+ USB_CONFIG(); // start USB clock
+ UDCON = 0; // enable attach resistor
+ usb_configuration = 0;
+ cdc_line_rtsdtr = 0;
+ UDIEN = (1<<EORSTE)|(1<<SOFE);
+ sei();
+}
+
+// return 0 if the USB is not configured, or the configuration
+// number selected by the HOST
+uint8_t usb_configured(void)
+{
+ return usb_configuration;
+}
+
+// get the next character, or -1 if nothing received
+int16_t usb_serial_getchar(void)
+{
+ uint8_t c, intr_state;
+
+ // interrupts are disabled so these functions can be
+ // used from the main program or interrupt context,
+ // even both in the same program!
+ intr_state = SREG;
+ cli();
+ if (!usb_configuration) {
+ SREG = intr_state;
+ return -1;
+ }
+ UENUM = CDC_RX_ENDPOINT;
+ retry:
+ c = UEINTX;
+ if (!(c & (1<<RWAL))) {
+ // no data in buffer
+ if (c & (1<<RXOUTI)) {
+ UEINTX = 0x6B;
+ goto retry;
+ }
+ SREG = intr_state;
+ return -1;
+ }
+ // take one byte out of the buffer
+ c = UEDATX;
+ // if buffer completely used, release it
+ if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
+ SREG = intr_state;
+ return c;
+}
+
+// number of bytes available in the receive buffer
+uint8_t usb_serial_available(void)
+{
+ uint8_t n=0, i, intr_state;
+
+ intr_state = SREG;
+ cli();
+ if (usb_configuration) {
+ UENUM = CDC_RX_ENDPOINT;
+ n = UEBCLX;
+ if (!n) {
+ i = UEINTX;
+ if (i & (1<<RXOUTI) && !(i & (1<<RWAL))) UEINTX = 0x6B;
+ }
+ }
+ SREG = intr_state;
+ return n;
+}
+
+// discard any buffered input
+void usb_serial_flush_input(void)
+{
+ uint8_t intr_state;
+
+ if (usb_configuration) {
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_RX_ENDPOINT;
+ while ((UEINTX & (1<<RWAL))) {
+ UEINTX = 0x6B;
+ }
+ SREG = intr_state;
+ }
+}
+
+// transmit a character. 0 returned on success, -1 on error
+int8_t usb_serial_putchar(uint8_t c)
+{
+ uint8_t timeout, intr_state;
+
+ // if we're not online (enumerated and configured), error
+ if (!usb_configuration) return -1;
+ // interrupts are disabled so these functions can be
+ // used from the main program or interrupt context,
+ // even both in the same program!
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_TX_ENDPOINT;
+ // if we gave up due to timeout before, don't wait again
+ if (transmit_previous_timeout) {
+ if (!(UEINTX & (1<<RWAL))) {
+ SREG = intr_state;
+ return -1;
+ }
+ transmit_previous_timeout = 0;
+ }
+ // wait for the FIFO to be ready to accept data
+ timeout = UDFNUML + TRANSMIT_TIMEOUT;
+ while (1) {
+ // are we ready to transmit?
+ if (UEINTX & (1<<RWAL)) break;
+ SREG = intr_state;
+ // have we waited too long? This happens if the user
+ // is not running an application that is listening
+ if (UDFNUML == timeout) {
+ transmit_previous_timeout = 1;
+ return -1;
+ }
+ // has the USB gone offline?
+ if (!usb_configuration) return -1;
+ // get ready to try checking again
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_TX_ENDPOINT;
+ }
+ // actually write the byte into the FIFO
+ UEDATX = c;
+ // if this completed a packet, transmit it now!
+ if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
+ transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
+ SREG = intr_state;
+ return 0;
+}
+
+
+// transmit a character, but do not wait if the buffer is full,
+// 0 returned on success, -1 on buffer full or error
+int8_t usb_serial_putchar_nowait(uint8_t c)
+{
+ uint8_t intr_state;
+
+ if (!usb_configuration) return -1;
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_TX_ENDPOINT;
+ if (!(UEINTX & (1<<RWAL))) {
+ // buffer is full
+ SREG = intr_state;
+ return -1;
+ }
+ // actually write the byte into the FIFO
+ UEDATX = c;
+ // if this completed a packet, transmit it now!
+ if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
+ transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
+ SREG = intr_state;
+ return 0;
+}
+
+// transmit a buffer.
+// 0 returned on success, -1 on error
+// This function is optimized for speed! Each call takes approx 6.1 us overhead
+// plus 0.25 us per byte. 12 Mbit/sec USB has 8.67 us per-packet overhead and
+// takes 0.67 us per byte. If called with 64 byte packet-size blocks, this function
+// can transmit at full USB speed using 43% CPU time. The maximum theoretical speed
+// is 19 packets per USB frame, or 1216 kbytes/sec. However, bulk endpoints have the
+// lowest priority, so any other USB devices will likely reduce the speed. Speed
+// can also be limited by how quickly the PC-based software reads data, as the host
+// controller in the PC will not allocate bandwitdh without a pending read request.
+// (thanks to Victor Suarez for testing and feedback and initial code)
+
+int8_t usb_serial_write(const uint8_t *buffer, uint16_t size)
+{
+ uint8_t timeout, intr_state, write_size;
+
+ // if we're not online (enumerated and configured), error
+ if (!usb_configuration) return -1;
+ // interrupts are disabled so these functions can be
+ // used from the main program or interrupt context,
+ // even both in the same program!
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_TX_ENDPOINT;
+ // if we gave up due to timeout before, don't wait again
+ if (transmit_previous_timeout) {
+ if (!(UEINTX & (1<<RWAL))) {
+ SREG = intr_state;
+ return -1;
+ }
+ transmit_previous_timeout = 0;
+ }
+ // each iteration of this loop transmits a packet
+ while (size) {
+ // wait for the FIFO to be ready to accept data
+ timeout = UDFNUML + TRANSMIT_TIMEOUT;
+ while (1) {
+ // are we ready to transmit?
+ if (UEINTX & (1<<RWAL)) break;
+ SREG = intr_state;
+ // have we waited too long? This happens if the user
+ // is not running an application that is listening
+ if (UDFNUML == timeout) {
+ transmit_previous_timeout = 1;
+ return -1;
+ }
+ // has the USB gone offline?
+ if (!usb_configuration) return -1;
+ // get ready to try checking again
+ intr_state = SREG;
+ cli();
+ UENUM = CDC_TX_ENDPOINT;
+ }
+
+ // compute how many bytes will fit into the next packet
+ write_size = CDC_TX_SIZE - UEBCLX;
+ if (write_size > size) write_size = size;
+ size -= write_size;
+
+ // write the packet
+ switch (write_size) {
+ #if (CDC_TX_SIZE == 64)
+ case 64: UEDATX = *buffer++;
+ case 63: UEDATX = *buffer++;
+ case 62: UEDATX = *buffer++;
+ case 61: UEDATX = *buffer++;
+ case 60: UEDATX = *buffer++;
+ case 59: UEDATX = *buffer++;
+ case 58: UEDATX = *buffer++;
+ case 57: UEDATX = *buffer++;
+ case 56: UEDATX = *buffer++;
+ case 55: UEDATX = *buffer++;
+ case 54: UEDATX = *buffer++;
+ case 53: UEDATX = *buffer++;
+ case 52: UEDATX = *buffer++;
+ case 51: UEDATX = *buffer++;
+ case 50: UEDATX = *buffer++;
+ case 49: UEDATX = *buffer++;
+ case 48: UEDATX = *buffer++;
+ case 47: UEDATX = *buffer++;
+ case 46: UEDATX = *buffer++;
+ case 45: UEDATX = *buffer++;
+ case 44: UEDATX = *buffer++;
+ case 43: UEDATX = *buffer++;
+ case 42: UEDATX = *buffer++;
+ case 41: UEDATX = *buffer++;
+ case 40: UEDATX = *buffer++;
+ case 39: UEDATX = *buffer++;
+ case 38: UEDATX = *buffer++;
+ case 37: UEDATX = *buffer++;
+ case 36: UEDATX = *buffer++;
+ case 35: UEDATX = *buffer++;
+ case 34: UEDATX = *buffer++;
+ case 33: UEDATX = *buffer++;
+ #endif
+ #if (CDC_TX_SIZE >= 32)
+ case 32: UEDATX = *buffer++;
+ case 31: UEDATX = *buffer++;
+ case 30: UEDATX = *buffer++;
+ case 29: UEDATX = *buffer++;
+ case 28: UEDATX = *buffer++;
+ case 27: UEDATX = *buffer++;
+ case 26: UEDATX = *buffer++;
+ case 25: UEDATX = *buffer++;
+ case 24: UEDATX = *buffer++;
+ case 23: UEDATX = *buffer++;
+ case 22: UEDATX = *buffer++;
+ case 21: UEDATX = *buffer++;
+ case 20: UEDATX = *buffer++;
+ case 19: UEDATX = *buffer++;
+ case 18: UEDATX = *buffer++;
+ case 17: UEDATX = *buffer++;
+ #endif
+ #if (CDC_TX_SIZE >= 16)
+ case 16: UEDATX = *buffer++;
+ case 15: UEDATX = *buffer++;
+ case 14: UEDATX = *buffer++;
+ case 13: UEDATX = *buffer++;
+ case 12: UEDATX = *buffer++;
+ case 11: UEDATX = *buffer++;
+ case 10: UEDATX = *buffer++;
+ case 9: UEDATX = *buffer++;
+ #endif
+ case 8: UEDATX = *buffer++;
+ case 7: UEDATX = *buffer++;
+ case 6: UEDATX = *buffer++;
+ case 5: UEDATX = *buffer++;
+ case 4: UEDATX = *buffer++;
+ case 3: UEDATX = *buffer++;
+ case 2: UEDATX = *buffer++;
+ default:
+ case 1: UEDATX = *buffer++;
+ case 0: break;
+ }
+ // if this completed a packet, transmit it now!
+ if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
+ transmit_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
+ SREG = intr_state;
+ }
+ return 0;
+}
+
+
+// immediately transmit any buffered output.
+// This doesn't actually transmit the data - that is impossible!
+// USB devices only transmit when the host allows, so the best
+// we can do is release the FIFO buffer for when the host wants it
+void usb_serial_flush_output(void)
+{
+ uint8_t intr_state;
+
+ intr_state = SREG;
+ cli();
+ if (transmit_flush_timer) {
+ UENUM = CDC_TX_ENDPOINT;
+ UEINTX = 0x3A;
+ transmit_flush_timer = 0;
+ }
+ SREG = intr_state;
+}
+
+// functions to read the various async serial settings. These
+// aren't actually used by USB at all (communication is always
+// at full USB speed), but they are set by the host so we can
+// set them properly if we're converting the USB to a real serial
+// communication
+uint32_t usb_serial_get_baud(void)
+{
+ return *(uint32_t *)cdc_line_coding;
+}
+uint8_t usb_serial_get_stopbits(void)
+{
+ return cdc_line_coding[4];
+}
+uint8_t usb_serial_get_paritytype(void)
+{
+ return cdc_line_coding[5];
+}
+uint8_t usb_serial_get_numbits(void)
+{
+ return cdc_line_coding[6];
+}
+uint8_t usb_serial_get_control(void)
+{
+ return cdc_line_rtsdtr;
+}
+// write the control signals, DCD, DSR, RI, etc
+// There is no CTS signal. If software on the host has transmitted
+// data to you but you haven't been calling the getchar function,
+// it remains buffered (either here or on the host) and can not be
+// lost because you weren't listening at the right time, like it
+// would in real serial communication.
+int8_t usb_serial_set_control(uint8_t signals)
+{
+ uint8_t intr_state;
+
+ intr_state = SREG;
+ cli();
+ if (!usb_configuration) {
+ // we're not enumerated/configured
+ SREG = intr_state;
+ return -1;
+ }
+
+ UENUM = CDC_ACM_ENDPOINT;
+ if (!(UEINTX & (1<<RWAL))) {
+ // unable to write
+ // TODO; should this try to abort the previously
+ // buffered message??
+ SREG = intr_state;
+ return -1;
+ }
+ UEDATX = 0xA1;
+ UEDATX = 0x20;
+ UEDATX = 0;
+ UEDATX = 0;
+ UEDATX = 0; // 0 seems to work nicely. what if this is 1??
+ UEDATX = 0;
+ UEDATX = 1;
+ UEDATX = 0;
+ UEDATX = signals;
+ UEINTX = 0x3A;
+ SREG = intr_state;
+ return 0;
+}
+
+
+
+/**************************************************************************
+ *
+ * Private Functions - not intended for general user consumption....
+ *
+ **************************************************************************/
+
+
+// USB Device Interrupt - handle all device-level events
+// the transmit buffer flushing is triggered by the start of frame
+//
+ISR(USB_GEN_vect)
+{
+ uint8_t intbits, t;
+
+ intbits = UDINT;
+ UDINT = 0;
+ if (intbits & (1<<EORSTI)) {
+ UENUM = 0;
+ UECONX = 1;
+ UECFG0X = EP_TYPE_CONTROL;
+ UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;
+ UEIENX = (1<<RXSTPE);
+ usb_configuration = 0;
+ cdc_line_rtsdtr = 0;
+ }
+ if (intbits & (1<<SOFI)) {
+ if (usb_configuration) {
+ t = transmit_flush_timer;
+ if (t) {
+ transmit_flush_timer = --t;
+ if (!t) {
+ UENUM = CDC_TX_ENDPOINT;
+ UEINTX = 0x3A;
+ }
+ }
+ }
+ }
+}
+
+
+// Misc functions to wait for ready and send/receive packets
+static inline void usb_wait_in_ready(void)
+{
+ while (!(UEINTX & (1<<TXINI))) ;
+}
+static inline void usb_send_in(void)
+{
+ UEINTX = ~(1<<TXINI);
+}
+static inline void usb_wait_receive_out(void)
+{
+ while (!(UEINTX & (1<<RXOUTI))) ;
+}
+static inline void usb_ack_out(void)
+{
+ UEINTX = ~(1<<RXOUTI);
+}
+
+
+
+// USB Endpoint Interrupt - endpoint 0 is handled here. The
+// other endpoints are manipulated by the user-callable
+// functions, and the start-of-frame interrupt.
+//
+ISR(USB_COM_vect)
+{
+ uint8_t intbits;
+ const uint8_t *list;
+ const uint8_t *cfg;
+ uint8_t i, n, len, en;
+ uint8_t *p;
+ uint8_t bmRequestType;
+ uint8_t bRequest;
+ uint16_t wValue;
+ uint16_t wIndex;
+ uint16_t wLength;
+ uint16_t desc_val;
+ const uint8_t *desc_addr;
+ uint8_t desc_length;
+
+ UENUM = 0;
+ intbits = UEINTX;
+ if (intbits & (1<<RXSTPI)) {
+ bmRequestType = UEDATX;
+ bRequest = UEDATX;
+ wValue = UEDATX;
+ wValue |= (UEDATX << 8);
+ wIndex = UEDATX;
+ wIndex |= (UEDATX << 8);
+ wLength = UEDATX;
+ wLength |= (UEDATX << 8);
+ UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
+ if (bRequest == GET_DESCRIPTOR) {
+ list = (const uint8_t *)descriptor_list;
+ for (i=0; ; i++) {
+ if (i >= NUM_DESC_LIST) {
+ UECONX = (1<<STALLRQ)|(1<<EPEN); //stall
+ return;
+ }
+ desc_val = pgm_read_word(list);
+ if (desc_val != wValue) {
+ list += sizeof(struct descriptor_list_struct);
+ continue;
+ }
+ list += 2;
+ desc_val = pgm_read_word(list);
+ if (desc_val != wIndex) {
+ list += sizeof(struct descriptor_list_struct)-2;
+ continue;
+ }
+ list += 2;
+ desc_addr = (const uint8_t *)pgm_read_word(list);
+ list += 2;
+ desc_length = pgm_read_byte(list);
+ break;
+ }
+ len = (wLength < 256) ? wLength : 255;
+ if (len > desc_length) len = desc_length;
+ do {
+ // wait for host ready for IN packet
+ do {
+ i = UEINTX;
+ } while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
+ if (i & (1<<RXOUTI)) return; // abort
+ // send IN packet
+ n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
+ for (i = n; i; i--) {
+ UEDATX = pgm_read_byte(desc_addr++);
+ }
+ len -= n;
+ usb_send_in();
+ } while (len || n == ENDPOINT0_SIZE);
+ return;
+ }
+ if (bRequest == SET_ADDRESS) {
+ usb_send_in();
+ usb_wait_in_ready();
+ UDADDR = wValue | (1<<ADDEN);
+ return;
+ }
+ if (bRequest == SET_CONFIGURATION && bmRequestType == 0) {
+ usb_configuration = wValue;
+ cdc_line_rtsdtr = 0;
+ transmit_flush_timer = 0;
+ usb_send_in();
+ cfg = endpoint_config_table;
+ for (i=1; i<5; i++) {
+ UENUM = i;
+ en = pgm_read_byte(cfg++);
+ UECONX = en;
+ if (en) {
+ UECFG0X = pgm_read_byte(cfg++);
+ UECFG1X = pgm_read_byte(cfg++);
+ }
+ }
+ UERST = 0x1E;
+ UERST = 0;
+ return;
+ }
+ if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {
+ usb_wait_in_ready();
+ UEDATX = usb_configuration;
+ usb_send_in();
+ return;
+ }
+ if (bRequest == CDC_GET_LINE_CODING && bmRequestType == 0xA1) {
+ usb_wait_in_ready();
+ p = cdc_line_coding;
+ for (i=0; i<7; i++) {
+ UEDATX = *p++;
+ }
+ usb_send_in();
+ return;
+ }
+ if (bRequest == CDC_SET_LINE_CODING && bmRequestType == 0x21) {
+ usb_wait_receive_out();
+ p = cdc_line_coding;
+ for (i=0; i<7; i++) {
+ *p++ = UEDATX;
+ }
+ usb_ack_out();
+ usb_send_in();
+ return;
+ }
+ if (bRequest == CDC_SET_CONTROL_LINE_STATE && bmRequestType == 0x21) {
+ cdc_line_rtsdtr = wValue;
+ usb_wait_in_ready();
+ usb_send_in();
+ return;
+ }
+ if (bRequest == GET_STATUS) {
+ usb_wait_in_ready();
+ i = 0;
+ #ifdef SUPPORT_ENDPOINT_HALT
+ if (bmRequestType == 0x82) {
+ UENUM = wIndex;
+ if (UECONX & (1<<STALLRQ)) i = 1;
+ UENUM = 0;
+ }
+ #endif
+ UEDATX = i;
+ UEDATX = 0;
+ usb_send_in();
+ return;
+ }
+ #ifdef SUPPORT_ENDPOINT_HALT
+ if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE)
+ && bmRequestType == 0x02 && wValue == 0) {
+ i = wIndex & 0x7F;
+ if (i >= 1 && i <= MAX_ENDPOINT) {
+ usb_send_in();
+ UENUM = i;
+ if (bRequest == SET_FEATURE) {
+ UECONX = (1<<STALLRQ)|(1<<EPEN);
+ } else {
+ UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN);
+ UERST = (1 << i);
+ UERST = 0;
+ }
+ return;
+ }
+ }
+ #endif
+ }
+ UECONX = (1<<STALLRQ) | (1<<EPEN); // stall
+}
+
+
--- /dev/null
+#ifndef usb_serial_h__
+#define usb_serial_h__
+
+#include <stdint.h>
+
+// setup
+void usb_init(void); // initialize everything
+uint8_t usb_configured(void); // is the USB port configured
+
+// receiving data
+int16_t usb_serial_getchar(void); // receive a character (-1 if timeout/error)
+uint8_t usb_serial_available(void); // number of bytes in receive buffer
+void usb_serial_flush_input(void); // discard any buffered input
+
+// transmitting data
+int8_t usb_serial_putchar(uint8_t c); // transmit a character
+int8_t usb_serial_putchar_nowait(uint8_t c); // transmit a character, do not wait
+int8_t usb_serial_write(const uint8_t *buffer, uint16_t size); // transmit a buffer
+void usb_serial_flush_output(void); // immediately transmit any buffered output
+
+// serial parameters
+uint32_t usb_serial_get_baud(void); // get the baud rate
+uint8_t usb_serial_get_stopbits(void); // get the number of stop bits
+uint8_t usb_serial_get_paritytype(void);// get the parity type
+uint8_t usb_serial_get_numbits(void); // get the number of data bits
+uint8_t usb_serial_get_control(void); // get the RTS and DTR signal state
+int8_t usb_serial_set_control(uint8_t signals); // set DSR, DCD, RI, etc
+
+// constants corresponding to the various serial parameters
+#define USB_SERIAL_DTR 0x01
+#define USB_SERIAL_RTS 0x02
+#define USB_SERIAL_1_STOP 0
+#define USB_SERIAL_1_5_STOP 1
+#define USB_SERIAL_2_STOP 2
+#define USB_SERIAL_PARITY_NONE 0
+#define USB_SERIAL_PARITY_ODD 1
+#define USB_SERIAL_PARITY_EVEN 2
+#define USB_SERIAL_PARITY_MARK 3
+#define USB_SERIAL_PARITY_SPACE 4
+#define USB_SERIAL_DCD 0x01
+#define USB_SERIAL_DSR 0x02
+#define USB_SERIAL_BREAK 0x04
+#define USB_SERIAL_RI 0x08
+#define USB_SERIAL_FRAME_ERR 0x10
+#define USB_SERIAL_PARITY_ERR 0x20
+#define USB_SERIAL_OVERRUN_ERR 0x40
+
+// This file does not include the HID debug functions, so these empty
+// macros replace them with nothing, so users can compile code that
+// has calls to these functions.
+#define usb_debug_putchar(c)
+#define usb_debug_flush_output()
+
+
+
+// Everything below this point is only intended for usb_serial.c
+#ifdef USB_SERIAL_PRIVATE_INCLUDE
+#include <avr/io.h>
+#include <avr/pgmspace.h>
+#include <avr/interrupt.h>
+
+#define EP_TYPE_CONTROL 0x00
+#define EP_TYPE_BULK_IN 0x81
+#define EP_TYPE_BULK_OUT 0x80
+#define EP_TYPE_INTERRUPT_IN 0xC1
+#define EP_TYPE_INTERRUPT_OUT 0xC0
+#define EP_TYPE_ISOCHRONOUS_IN 0x41
+#define EP_TYPE_ISOCHRONOUS_OUT 0x40
+#define EP_SINGLE_BUFFER 0x02
+#define EP_DOUBLE_BUFFER 0x06
+#define EP_SIZE(s) ((s) == 64 ? 0x30 : \
+ ((s) == 32 ? 0x20 : \
+ ((s) == 16 ? 0x10 : \
+ 0x00)))
+
+#define MAX_ENDPOINT 4
+
+#define LSB(n) (n & 255)
+#define MSB(n) ((n >> 8) & 255)
+
+#if defined(__AVR_AT90USB162__)
+#define HW_CONFIG()
+#define PLL_CONFIG() (PLLCSR = ((1<<PLLE)|(1<<PLLP0)))
+#define USB_CONFIG() (USBCON = (1<<USBE))
+#define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))
+#elif defined(__AVR_ATmega32U4__)
+#define HW_CONFIG() (UHWCON = 0x01)
+#define PLL_CONFIG() (PLLCSR = 0x12)
+#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))
+#define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))
+#elif defined(__AVR_AT90USB646__)
+#define HW_CONFIG() (UHWCON = 0x81)
+#define PLL_CONFIG() (PLLCSR = 0x1A)
+#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))
+#define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))
+#elif defined(__AVR_AT90USB1286__)
+#define HW_CONFIG() (UHWCON = 0x81)
+#define PLL_CONFIG() (PLLCSR = 0x16)
+#define USB_CONFIG() (USBCON = ((1<<USBE)|(1<<OTGPADE)))
+#define USB_FREEZE() (USBCON = ((1<<USBE)|(1<<FRZCLK)))
+#endif
+
+// standard control endpoint request types
+#define GET_STATUS 0
+#define CLEAR_FEATURE 1
+#define SET_FEATURE 3
+#define SET_ADDRESS 5
+#define GET_DESCRIPTOR 6
+#define GET_CONFIGURATION 8
+#define SET_CONFIGURATION 9
+#define GET_INTERFACE 10
+#define SET_INTERFACE 11
+// HID (human interface device)
+#define HID_GET_REPORT 1
+#define HID_GET_PROTOCOL 3
+#define HID_SET_REPORT 9
+#define HID_SET_IDLE 10
+#define HID_SET_PROTOCOL 11
+// CDC (communication class device)
+#define CDC_SET_LINE_CODING 0x20
+#define CDC_GET_LINE_CODING 0x21
+#define CDC_SET_CONTROL_LINE_STATE 0x22
+#endif
+#endif