--- /dev/null
+
+#include <PID_v1.h>
+
+#include <OneWire.h>
+
+
+// OneWire DS18S20, DS18B20, DS1822 Temperature Example
+//
+// http://www.pjrc.com/teensy/td_libs_OneWire.html
+//
+// The DallasTemperature library can do all this work for you!
+// http://milesburton.com/Dallas_Temperature_Control_Library
+
+OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary)
+
+//Define Variables we'll be connecting to
+double Setpoint, Input, Output;
+
+int newSetpoint;
+
+
+
+ byte i;
+ byte present;
+ byte type_s;
+ byte data[12];
+ byte addr[8];
+ float celsius, fahrenheit;
+
+
+double aggKp=10, aggKi=0, aggKd=3;
+double consKp=2, consKi=5, consKd=1;
+
+PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT);
+
+void setup(void) {
+ Serial.begin(9600);
+
+ pinMode(3, OUTPUT);
+ digitalWrite(3, LOW);
+
+ //initialize the variables we're linked to
+ Input = 20;
+ Setpoint = 20;
+
+ //turn the PID on
+ myPID.SetMode(AUTOMATIC);
+ myPID.SetControllerDirection(REVERSE);
+
+
+ init_ds1820();
+
+
+
+}
+
+
+void init_ds1820(void){
+ present = 0;
+
+ if ( !ds.search(addr)) {
+ Serial.println("No more addresses.");
+ Serial.println();
+ ds.reset_search();
+ delay(250);
+ return;
+ }
+
+ Serial.print("ROM =");
+ for( i = 0; i < 8; i++) {
+ Serial.write(' ');
+ Serial.print(addr[i], HEX);
+ }
+
+ if (OneWire::crc8(addr, 7) != addr[7]) {
+ Serial.println("CRC is not valid!");
+ return;
+ }
+ Serial.println();
+
+ // the first ROM byte indicates which chip
+ switch (addr[0]) {
+ case 0x10:
+ Serial.println(" Chip = DS18S20"); // or old DS1820
+ type_s = 1;
+ break;
+ case 0x28:
+ Serial.println(" Chip = DS18B20");
+ type_s = 0;
+ break;
+ case 0x22:
+ Serial.println(" Chip = DS1822");
+ type_s = 0;
+ break;
+ default:
+ Serial.println("Device is not a DS18x20 family device.");
+ return;
+ }
+
+
+
+
+
+}
+
+void loop(void) {
+
+ ds.reset();
+ ds.select(addr);
+ ds.write(0x44, 1); // start conversion, with parasite power on at the end
+
+ //delay(1000); // maybe 750ms is enough, maybe not
+ // we might do a ds.depower() here, but the reset will take care of it.
+
+
+ digitalWrite(3, HIGH);
+
+ for(int i = 0; i<1000; i++){
+ if( i >= Output*100){
+ digitalWrite(3, LOW);
+ }
+ delay(1);
+ }
+
+ present = ds.reset();
+ ds.select(addr);
+ ds.write(0xBE); // Read Scratchpad
+
+ //Serial.print(" Data = ");
+ //Serial.print(present, HEX);
+ //Serial.print(" ");
+ for ( i = 0; i < 9; i++) { // we need 9 bytes
+ data[i] = ds.read();
+ //Serial.print(data[i], HEX);
+ //Serial.print(" ");
+ }
+// Serial.print(" CRC=");
+// Serial.print(OneWire::crc8(data, 8), HEX);
+ Serial.println();
+
+ // Convert the data to actual temperature
+ // because the result is a 16 bit signed integer, it should
+ // be stored to an "int16_t" type, which is always 16 bits
+ // even when compiled on a 32 bit processor.
+ int16_t raw = (data[1] << 8) | data[0];
+ if (type_s) {
+ raw = raw << 3; // 9 bit resolution default
+ if (data[7] == 0x10) {
+ // "count remain" gives full 12 bit resolution
+ raw = (raw & 0xFFF0) + 12 - data[6];
+ }
+ } else {
+ byte cfg = (data[4] & 0x60);
+ // at lower res, the low bits are undefined, so let's zero them
+ if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
+ else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
+ else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
+ //// default is 12 bit resolution, 750 ms conversion time
+ }
+ celsius = (float)raw / 16.0;
+ fahrenheit = celsius * 1.8 + 32.0;
+
+ Input = celsius;
+
+ double gap = abs(Setpoint-Input); //distance away from setpoint
+ if(gap<2)
+ { //we're close to setpoint, use conservative tuning parameters
+ myPID.SetTunings(consKp, consKi, consKd);
+ Serial.println(" conservative PID constants");
+ }
+ else
+ {
+ //we're far from setpoint, use aggressive tuning parameters
+ myPID.SetTunings(aggKp, aggKi, aggKd);
+ Serial.println(" aggressive PID constants");
+ }
+
+
+ myPID.Compute();
+
+ Serial.print(" Setpoint = ");
+ Serial.print(Setpoint);
+ Serial.println(" Celsius");
+ Serial.print(" Temperature = ");
+ Serial.print(celsius);
+ Serial.println(" Celsius");
+// Serial.print(fahrenheit);
+// Serial.println(" Fahrenheit");
+ //analogWrite(3,Output);
+ Serial.print(" PID Output = ");
+ Serial.println(Output);
+ Serial.println("-----");
+
+
+
+
+ // send data only when you receive data:
+ while (Serial.available() > 0) {
+ // read the incoming byte:
+ //byte incomingByte = Serial.read();
+
+ // say what you got:
+ //Serial.print("I received: ");
+ //Serial.println(incomingByte, DEC);
+
+ newSetpoint = Serial.parseInt();
+
+ if (Serial.read() == '\n') {
+
+ Serial.print("received new setpoint: ");
+ Setpoint = newSetpoint;
+ Serial.println(Setpoint);
+ }
+
+
+ }
+
+
+}
--- /dev/null
+/*
+Copyright (c) 2007, Jim Studt (original old version - many contributors since)
+
+The latest version of this library may be found at:
+ http://www.pjrc.com/teensy/td_libs_OneWire.html
+
+OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
+January 2010. At the time, it was in need of many bug fixes, but had
+been abandoned the original author (Jim Studt). None of the known
+contributors were interested in maintaining OneWire. Paul typically
+works on OneWire every 6 to 12 months. Patches usually wait that
+long. If anyone is interested in more actively maintaining OneWire,
+please contact Paul.
+
+Version 2.2:
+ Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
+ Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
+ Fix DS18B20 example negative temperature
+ Fix DS18B20 example's low res modes, Ken Butcher
+ Improve reset timing, Mark Tillotson
+ Add const qualifiers, Bertrik Sikken
+ Add initial value input to crc16, Bertrik Sikken
+ Add target_search() function, Scott Roberts
+
+Version 2.1:
+ Arduino 1.0 compatibility, Paul Stoffregen
+ Improve temperature example, Paul Stoffregen
+ DS250x_PROM example, Guillermo Lovato
+ PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
+ Improvements from Glenn Trewitt:
+ - crc16() now works
+ - check_crc16() does all of calculation/checking work.
+ - Added read_bytes() and write_bytes(), to reduce tedious loops.
+ - Added ds2408 example.
+ Delete very old, out-of-date readme file (info is here)
+
+Version 2.0: Modifications by Paul Stoffregen, January 2010:
+http://www.pjrc.com/teensy/td_libs_OneWire.html
+ Search fix from Robin James
+ http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+ Use direct optimized I/O in all cases
+ Disable interrupts during timing critical sections
+ (this solves many random communication errors)
+ Disable interrupts during read-modify-write I/O
+ Reduce RAM consumption by eliminating unnecessary
+ variables and trimming many to 8 bits
+ Optimize both crc8 - table version moved to flash
+
+Modified to work with larger numbers of devices - avoids loop.
+Tested in Arduino 11 alpha with 12 sensors.
+26 Sept 2008 -- Robin James
+http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+
+Updated to work with arduino-0008 and to include skip() as of
+2007/07/06. --RJL20
+
+Modified to calculate the 8-bit CRC directly, avoiding the need for
+the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
+-- Tom Pollard, Jan 23, 2008
+
+Jim Studt's original library was modified by Josh Larios.
+
+Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the
+"Software"), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Much of the code was inspired by Derek Yerger's code, though I don't
+think much of that remains. In any event that was..
+ (copyleft) 2006 by Derek Yerger - Free to distribute freely.
+
+The CRC code was excerpted and inspired by the Dallas Semiconductor
+sample code bearing this copyright.
+//---------------------------------------------------------------------------
+// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the
+// Software is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included
+// in all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
+// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+// OTHER DEALINGS IN THE SOFTWARE.
+//
+// Except as contained in this notice, the name of Dallas Semiconductor
+// shall not be used except as stated in the Dallas Semiconductor
+// Branding Policy.
+//--------------------------------------------------------------------------
+*/
+
+#include "OneWire.h"
+
+
+OneWire::OneWire(uint8_t pin)
+{
+ pinMode(pin, INPUT);
+ bitmask = PIN_TO_BITMASK(pin);
+ baseReg = PIN_TO_BASEREG(pin);
+#if ONEWIRE_SEARCH
+ reset_search();
+#endif
+}
+
+
+// Perform the onewire reset function. We will wait up to 250uS for
+// the bus to come high, if it doesn't then it is broken or shorted
+// and we return a 0;
+//
+// Returns 1 if a device asserted a presence pulse, 0 otherwise.
+//
+uint8_t OneWire::reset(void)
+{
+ IO_REG_TYPE mask = bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+ uint8_t r;
+ uint8_t retries = 125;
+
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask);
+ interrupts();
+ // wait until the wire is high... just in case
+ do {
+ if (--retries == 0) return 0;
+ delayMicroseconds(2);
+ } while ( !DIRECT_READ(reg, mask));
+
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ interrupts();
+ delayMicroseconds(480);
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask); // allow it to float
+ delayMicroseconds(70);
+ r = !DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(410);
+ return r;
+}
+
+//
+// Write a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+void OneWire::write_bit(uint8_t v)
+{
+ IO_REG_TYPE mask=bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+
+ if (v & 1) {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(10);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(55);
+ } else {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(65);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(5);
+ }
+}
+
+//
+// Read a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+uint8_t OneWire::read_bit(void)
+{
+ IO_REG_TYPE mask=bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+ uint8_t r;
+
+ noInterrupts();
+ DIRECT_MODE_OUTPUT(reg, mask);
+ DIRECT_WRITE_LOW(reg, mask);
+ delayMicroseconds(3);
+ DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
+ delayMicroseconds(10);
+ r = DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(53);
+ return r;
+}
+
+//
+// Write a byte. The writing code uses the active drivers to raise the
+// pin high, if you need power after the write (e.g. DS18S20 in
+// parasite power mode) then set 'power' to 1, otherwise the pin will
+// go tri-state at the end of the write to avoid heating in a short or
+// other mishap.
+//
+void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
+ uint8_t bitMask;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ OneWire::write_bit( (bitMask & v)?1:0);
+ }
+ if ( !power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ write(buf[i]);
+ if (!power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+//
+// Read a byte
+//
+uint8_t OneWire::read() {
+ uint8_t bitMask;
+ uint8_t r = 0;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ if ( OneWire::read_bit()) r |= bitMask;
+ }
+ return r;
+}
+
+void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ buf[i] = read();
+}
+
+//
+// Do a ROM select
+//
+void OneWire::select(const uint8_t rom[8])
+{
+ uint8_t i;
+
+ write(0x55); // Choose ROM
+
+ for (i = 0; i < 8; i++) write(rom[i]);
+}
+
+//
+// Do a ROM skip
+//
+void OneWire::skip()
+{
+ write(0xCC); // Skip ROM
+}
+
+void OneWire::depower()
+{
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ interrupts();
+}
+
+#if ONEWIRE_SEARCH
+
+//
+// You need to use this function to start a search again from the beginning.
+// You do not need to do it for the first search, though you could.
+//
+void OneWire::reset_search()
+{
+ // reset the search state
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ for(int i = 7; ; i--) {
+ ROM_NO[i] = 0;
+ if ( i == 0) break;
+ }
+}
+
+// Setup the search to find the device type 'family_code' on the next call
+// to search(*newAddr) if it is present.
+//
+void OneWire::target_search(uint8_t family_code)
+{
+ // set the search state to find SearchFamily type devices
+ ROM_NO[0] = family_code;
+ for (uint8_t i = 1; i < 8; i++)
+ ROM_NO[i] = 0;
+ LastDiscrepancy = 64;
+ LastFamilyDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+}
+
+//
+// Perform a search. If this function returns a '1' then it has
+// enumerated the next device and you may retrieve the ROM from the
+// OneWire::address variable. If there are no devices, no further
+// devices, or something horrible happens in the middle of the
+// enumeration then a 0 is returned. If a new device is found then
+// its address is copied to newAddr. Use OneWire::reset_search() to
+// start over.
+//
+// --- Replaced by the one from the Dallas Semiconductor web site ---
+//--------------------------------------------------------------------------
+// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
+// search state.
+// Return TRUE : device found, ROM number in ROM_NO buffer
+// FALSE : device not found, end of search
+//
+uint8_t OneWire::search(uint8_t *newAddr)
+{
+ uint8_t id_bit_number;
+ uint8_t last_zero, rom_byte_number, search_result;
+ uint8_t id_bit, cmp_id_bit;
+
+ unsigned char rom_byte_mask, search_direction;
+
+ // initialize for search
+ id_bit_number = 1;
+ last_zero = 0;
+ rom_byte_number = 0;
+ rom_byte_mask = 1;
+ search_result = 0;
+
+ // if the last call was not the last one
+ if (!LastDeviceFlag)
+ {
+ // 1-Wire reset
+ if (!reset())
+ {
+ // reset the search
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ return FALSE;
+ }
+
+ // issue the search command
+ write(0xF0);
+
+ // loop to do the search
+ do
+ {
+ // read a bit and its complement
+ id_bit = read_bit();
+ cmp_id_bit = read_bit();
+
+ // check for no devices on 1-wire
+ if ((id_bit == 1) && (cmp_id_bit == 1))
+ break;
+ else
+ {
+ // all devices coupled have 0 or 1
+ if (id_bit != cmp_id_bit)
+ search_direction = id_bit; // bit write value for search
+ else
+ {
+ // if this discrepancy if before the Last Discrepancy
+ // on a previous next then pick the same as last time
+ if (id_bit_number < LastDiscrepancy)
+ search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
+ else
+ // if equal to last pick 1, if not then pick 0
+ search_direction = (id_bit_number == LastDiscrepancy);
+
+ // if 0 was picked then record its position in LastZero
+ if (search_direction == 0)
+ {
+ last_zero = id_bit_number;
+
+ // check for Last discrepancy in family
+ if (last_zero < 9)
+ LastFamilyDiscrepancy = last_zero;
+ }
+ }
+
+ // set or clear the bit in the ROM byte rom_byte_number
+ // with mask rom_byte_mask
+ if (search_direction == 1)
+ ROM_NO[rom_byte_number] |= rom_byte_mask;
+ else
+ ROM_NO[rom_byte_number] &= ~rom_byte_mask;
+
+ // serial number search direction write bit
+ write_bit(search_direction);
+
+ // increment the byte counter id_bit_number
+ // and shift the mask rom_byte_mask
+ id_bit_number++;
+ rom_byte_mask <<= 1;
+
+ // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
+ if (rom_byte_mask == 0)
+ {
+ rom_byte_number++;
+ rom_byte_mask = 1;
+ }
+ }
+ }
+ while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
+
+ // if the search was successful then
+ if (!(id_bit_number < 65))
+ {
+ // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
+ LastDiscrepancy = last_zero;
+
+ // check for last device
+ if (LastDiscrepancy == 0)
+ LastDeviceFlag = TRUE;
+
+ search_result = TRUE;
+ }
+ }
+
+ // if no device found then reset counters so next 'search' will be like a first
+ if (!search_result || !ROM_NO[0])
+ {
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ search_result = FALSE;
+ }
+ for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
+ return search_result;
+ }
+
+#endif
+
+#if ONEWIRE_CRC
+// The 1-Wire CRC scheme is described in Maxim Application Note 27:
+// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
+//
+
+#if ONEWIRE_CRC8_TABLE
+// This table comes from Dallas sample code where it is freely reusable,
+// though Copyright (C) 2000 Dallas Semiconductor Corporation
+static const uint8_t PROGMEM dscrc_table[] = {
+ 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
+ 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
+ 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
+ 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
+ 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
+ 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
+ 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
+ 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
+ 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
+ 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
+ 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
+ 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
+ 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
+ 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
+ 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
+ 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
+
+//
+// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
+// and the registers. (note: this might better be done without to
+// table, it would probably be smaller and certainly fast enough
+// compared to all those delayMicrosecond() calls. But I got
+// confused, so I use this table from the examples.)
+//
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+ crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
+ }
+ return crc;
+}
+#else
+//
+// Compute a Dallas Semiconductor 8 bit CRC directly.
+// this is much slower, but much smaller, than the lookup table.
+//
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+ uint8_t inbyte = *addr++;
+ for (uint8_t i = 8; i; i--) {
+ uint8_t mix = (crc ^ inbyte) & 0x01;
+ crc >>= 1;
+ if (mix) crc ^= 0x8C;
+ inbyte >>= 1;
+ }
+ }
+ return crc;
+}
+#endif
+
+#if ONEWIRE_CRC16
+bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
+{
+ crc = ~crc16(input, len, crc);
+ return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
+}
+
+uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
+{
+ static const uint8_t oddparity[16] =
+ { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
+
+ for (uint16_t i = 0 ; i < len ; i++) {
+ // Even though we're just copying a byte from the input,
+ // we'll be doing 16-bit computation with it.
+ uint16_t cdata = input[i];
+ cdata = (cdata ^ crc) & 0xff;
+ crc >>= 8;
+
+ if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
+ crc ^= 0xC001;
+
+ cdata <<= 6;
+ crc ^= cdata;
+ cdata <<= 1;
+ crc ^= cdata;
+ }
+ return crc;
+}
+#endif
+
+#endif
--- /dev/null
+#ifndef OneWire_h
+#define OneWire_h
+
+#include <inttypes.h>
+
+#if ARDUINO >= 100
+#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
+#else
+#include "WProgram.h" // for delayMicroseconds
+#include "pins_arduino.h" // for digitalPinToBitMask, etc
+#endif
+
+// You can exclude certain features from OneWire. In theory, this
+// might save some space. In practice, the compiler automatically
+// removes unused code (technically, the linker, using -fdata-sections
+// and -ffunction-sections when compiling, and Wl,--gc-sections
+// when linking), so most of these will not result in any code size
+// reduction. Well, unless you try to use the missing features
+// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
+// is the exception, because it selects a fast but large algorithm
+// or a small but slow algorithm.
+
+// you can exclude onewire_search by defining that to 0
+#ifndef ONEWIRE_SEARCH
+#define ONEWIRE_SEARCH 1
+#endif
+
+// You can exclude CRC checks altogether by defining this to 0
+#ifndef ONEWIRE_CRC
+#define ONEWIRE_CRC 1
+#endif
+
+// Select the table-lookup method of computing the 8-bit CRC
+// by setting this to 1. The lookup table enlarges code size by
+// about 250 bytes. It does NOT consume RAM (but did in very
+// old versions of OneWire). If you disable this, a slower
+// but very compact algorithm is used.
+#ifndef ONEWIRE_CRC8_TABLE
+#define ONEWIRE_CRC8_TABLE 1
+#endif
+
+// You can allow 16-bit CRC checks by defining this to 1
+// (Note that ONEWIRE_CRC must also be 1.)
+#ifndef ONEWIRE_CRC16
+#define ONEWIRE_CRC16 1
+#endif
+
+#define FALSE 0
+#define TRUE 1
+
+// Platform specific I/O definitions
+
+#if defined(__AVR__)
+#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint8_t
+#define IO_REG_ASM asm("r30")
+#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
+
+#elif defined(__MK20DX128__)
+#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
+#define PIN_TO_BITMASK(pin) (1)
+#define IO_REG_TYPE uint8_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (*((base)+512))
+#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
+#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
+#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
+#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
+
+#elif defined(__SAM3X8E__)
+// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
+// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
+// If you have trouble with OneWire on Arduino Due, please check the
+// status of delayMicroseconds() before reporting a bug in OneWire!
+#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
+#ifndef PROGMEM
+#define PROGMEM
+#endif
+#ifndef pgm_read_byte
+#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
+#endif
+
+#elif defined(__PIC32MX__)
+#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
+#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
+#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
+#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
+#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
+
+#else
+#error "Please define I/O register types here"
+#endif
+
+
+class OneWire
+{
+ private:
+ IO_REG_TYPE bitmask;
+ volatile IO_REG_TYPE *baseReg;
+
+#if ONEWIRE_SEARCH
+ // global search state
+ unsigned char ROM_NO[8];
+ uint8_t LastDiscrepancy;
+ uint8_t LastFamilyDiscrepancy;
+ uint8_t LastDeviceFlag;
+#endif
+
+ public:
+ OneWire( uint8_t pin);
+
+ // Perform a 1-Wire reset cycle. Returns 1 if a device responds
+ // with a presence pulse. Returns 0 if there is no device or the
+ // bus is shorted or otherwise held low for more than 250uS
+ uint8_t reset(void);
+
+ // Issue a 1-Wire rom select command, you do the reset first.
+ void select(const uint8_t rom[8]);
+
+ // Issue a 1-Wire rom skip command, to address all on bus.
+ void skip(void);
+
+ // Write a byte. If 'power' is one then the wire is held high at
+ // the end for parasitically powered devices. You are responsible
+ // for eventually depowering it by calling depower() or doing
+ // another read or write.
+ void write(uint8_t v, uint8_t power = 0);
+
+ void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
+
+ // Read a byte.
+ uint8_t read(void);
+
+ void read_bytes(uint8_t *buf, uint16_t count);
+
+ // Write a bit. The bus is always left powered at the end, see
+ // note in write() about that.
+ void write_bit(uint8_t v);
+
+ // Read a bit.
+ uint8_t read_bit(void);
+
+ // Stop forcing power onto the bus. You only need to do this if
+ // you used the 'power' flag to write() or used a write_bit() call
+ // and aren't about to do another read or write. You would rather
+ // not leave this powered if you don't have to, just in case
+ // someone shorts your bus.
+ void depower(void);
+
+#if ONEWIRE_SEARCH
+ // Clear the search state so that if will start from the beginning again.
+ void reset_search();
+
+ // Setup the search to find the device type 'family_code' on the next call
+ // to search(*newAddr) if it is present.
+ void target_search(uint8_t family_code);
+
+ // Look for the next device. Returns 1 if a new address has been
+ // returned. A zero might mean that the bus is shorted, there are
+ // no devices, or you have already retrieved all of them. It
+ // might be a good idea to check the CRC to make sure you didn't
+ // get garbage. The order is deterministic. You will always get
+ // the same devices in the same order.
+ uint8_t search(uint8_t *newAddr);
+#endif
+
+#if ONEWIRE_CRC
+ // Compute a Dallas Semiconductor 8 bit CRC, these are used in the
+ // ROM and scratchpad registers.
+ static uint8_t crc8(const uint8_t *addr, uint8_t len);
+
+#if ONEWIRE_CRC16
+ // Compute the 1-Wire CRC16 and compare it against the received CRC.
+ // Example usage (reading a DS2408):
+ // // Put everything in a buffer so we can compute the CRC easily.
+ // uint8_t buf[13];
+ // buf[0] = 0xF0; // Read PIO Registers
+ // buf[1] = 0x88; // LSB address
+ // buf[2] = 0x00; // MSB address
+ // WriteBytes(net, buf, 3); // Write 3 cmd bytes
+ // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
+ // if (!CheckCRC16(buf, 11, &buf[11])) {
+ // // Handle error.
+ // }
+ //
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param inverted_crc - The two CRC16 bytes in the received data.
+ // This should just point into the received data,
+ // *not* at a 16-bit integer.
+ // @param crc - The crc starting value (optional)
+ // @return True, iff the CRC matches.
+ static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
+
+ // Compute a Dallas Semiconductor 16 bit CRC. This is required to check
+ // the integrity of data received from many 1-Wire devices. Note that the
+ // CRC computed here is *not* what you'll get from the 1-Wire network,
+ // for two reasons:
+ // 1) The CRC is transmitted bitwise inverted.
+ // 2) Depending on the endian-ness of your processor, the binary
+ // representation of the two-byte return value may have a different
+ // byte order than the two bytes you get from 1-Wire.
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param crc - The crc starting value (optional)
+ // @return The CRC16, as defined by Dallas Semiconductor.
+ static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
+#endif
+#endif
+};
+
+#endif
--- /dev/null
+#include <OneWire.h>
+
+// OneWire DS18S20, DS18B20, DS1822 Temperature Example
+//
+// http://www.pjrc.com/teensy/td_libs_OneWire.html
+//
+// The DallasTemperature library can do all this work for you!
+// http://milesburton.com/Dallas_Temperature_Control_Library
+
+OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary)
+
+void setup(void) {
+ Serial.begin(9600);
+}
+
+void loop(void) {
+ byte i;
+ byte present = 0;
+ byte type_s;
+ byte data[12];
+ byte addr[8];
+ float celsius, fahrenheit;
+
+ if ( !ds.search(addr)) {
+ Serial.println("No more addresses.");
+ Serial.println();
+ ds.reset_search();
+ delay(250);
+ return;
+ }
+
+ Serial.print("ROM =");
+ for( i = 0; i < 8; i++) {
+ Serial.write(' ');
+ Serial.print(addr[i], HEX);
+ }
+
+ if (OneWire::crc8(addr, 7) != addr[7]) {
+ Serial.println("CRC is not valid!");
+ return;
+ }
+ Serial.println();
+
+ // the first ROM byte indicates which chip
+ switch (addr[0]) {
+ case 0x10:
+ Serial.println(" Chip = DS18S20"); // or old DS1820
+ type_s = 1;
+ break;
+ case 0x28:
+ Serial.println(" Chip = DS18B20");
+ type_s = 0;
+ break;
+ case 0x22:
+ Serial.println(" Chip = DS1822");
+ type_s = 0;
+ break;
+ default:
+ Serial.println("Device is not a DS18x20 family device.");
+ return;
+ }
+
+ ds.reset();
+ ds.select(addr);
+ ds.write(0x44, 1); // start conversion, with parasite power on at the end
+
+ delay(1000); // maybe 750ms is enough, maybe not
+ // we might do a ds.depower() here, but the reset will take care of it.
+
+ present = ds.reset();
+ ds.select(addr);
+ ds.write(0xBE); // Read Scratchpad
+
+ Serial.print(" Data = ");
+ Serial.print(present, HEX);
+ Serial.print(" ");
+ for ( i = 0; i < 9; i++) { // we need 9 bytes
+ data[i] = ds.read();
+ Serial.print(data[i], HEX);
+ Serial.print(" ");
+ }
+ Serial.print(" CRC=");
+ Serial.print(OneWire::crc8(data, 8), HEX);
+ Serial.println();
+
+ // Convert the data to actual temperature
+ // because the result is a 16 bit signed integer, it should
+ // be stored to an "int16_t" type, which is always 16 bits
+ // even when compiled on a 32 bit processor.
+ int16_t raw = (data[1] << 8) | data[0];
+ if (type_s) {
+ raw = raw << 3; // 9 bit resolution default
+ if (data[7] == 0x10) {
+ // "count remain" gives full 12 bit resolution
+ raw = (raw & 0xFFF0) + 12 - data[6];
+ }
+ } else {
+ byte cfg = (data[4] & 0x60);
+ // at lower res, the low bits are undefined, so let's zero them
+ if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
+ else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
+ else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
+ //// default is 12 bit resolution, 750 ms conversion time
+ }
+ celsius = (float)raw / 16.0;
+ fahrenheit = celsius * 1.8 + 32.0;
+ Serial.print(" Temperature = ");
+ Serial.print(celsius);
+ Serial.print(" Celsius, ");
+ Serial.print(fahrenheit);
+ Serial.println(" Fahrenheit");
+}
--- /dev/null
+#include <OneWire.h>
+
+/*
+ * DS2408 8-Channel Addressable Switch
+ *
+ * Writte by Glenn Trewitt, glenn at trewitt dot org
+ *
+ * Some notes about the DS2408:
+ * - Unlike most input/output ports, the DS2408 doesn't have mode bits to
+ * set whether the pins are input or output. If you issue a read command,
+ * they're inputs. If you write to them, they're outputs.
+ * - For reading from a switch, you should use 10K pull-up resisters.
+ */
+
+void PrintBytes(uint8_t* addr, uint8_t count, bool newline=0) {
+ for (uint8_t i = 0; i < count; i++) {
+ Serial.print(addr[i]>>4, HEX);
+ Serial.print(addr[i]&0x0f, HEX);
+ }
+ if (newline)
+ Serial.println();
+}
+
+void ReadAndReport(OneWire* net, uint8_t* addr) {
+ Serial.print(" Reading DS2408 ");
+ PrintBytes(addr, 8);
+ Serial.println();
+
+ uint8_t buf[13]; // Put everything in the buffer so we can compute CRC easily.
+ buf[0] = 0xF0; // Read PIO Registers
+ buf[1] = 0x88; // LSB address
+ buf[2] = 0x00; // MSB address
+ net->write_bytes(buf, 3);
+ net->read_bytes(buf+3, 10); // 3 cmd bytes, 6 data bytes, 2 0xFF, 2 CRC16
+ net->reset();
+
+ if (!OneWire::check_crc16(buf, 11, &buf[11])) {
+ Serial.print("CRC failure in DS2408 at ");
+ PrintBytes(addr, 8, true);
+ return;
+ }
+ Serial.print(" DS2408 data = ");
+ // First 3 bytes contain command, register address.
+ Serial.println(buf[3], BIN);
+}
+
+OneWire net(10); // on pin 10
+
+void setup(void) {
+ Serial.begin(9600);
+}
+
+void loop(void) {
+ byte i;
+ byte present = 0;
+ byte addr[8];
+
+ if (!net.search(addr)) {
+ Serial.print("No more addresses.\n");
+ net.reset_search();
+ delay(1000);
+ return;
+ }
+
+ if (OneWire::crc8(addr, 7) != addr[7]) {
+ Serial.print("CRC is not valid!\n");
+ return;
+ }
+
+ if (addr[0] != 0x29) {
+ PrintBytes(addr, 8);
+ Serial.print(" is not a DS2408.\n");
+ return;
+ }
+
+ ReadAndReport(&net, addr);
+}
--- /dev/null
+/*
+DS250x add-only programmable memory reader w/SKIP ROM.
+
+ The DS250x is a 512/1024bit add-only PROM(you can add data but cannot change the old one) that's used mainly for device identification purposes
+ like serial number, mfgr data, unique identifiers, etc. It uses the Maxim 1-wire bus.
+
+ This sketch will use the SKIP ROM function that skips the 1-Wire search phase since we only have one device connected in the bus on digital pin 6.
+ If more than one device is connected to the bus, it will fail.
+ Sketch will not verify if device connected is from the DS250x family since the skip rom function effectively skips the family-id byte readout.
+ thus it is possible to run this sketch with any Maxim OneWire device in which case the command CRC will most likely fail.
+ Sketch will only read the first page of memory(32bits) starting from the lower address(0000h), if more than 1 device is present, then use the sketch with search functions.
+ Remember to put a 4.7K pullup resistor between pin 6 and +Vcc
+
+ To change the range or ammount of data to read, simply change the data array size, LSB/MSB addresses and for loop iterations
+
+ This example code is in the public domain and is provided AS-IS.
+
+ Built with Arduino 0022 and PJRC OneWire 2.0 library http://www.pjrc.com/teensy/td_libs_OneWire.html
+
+ created by Guillermo Lovato <glovato@gmail.com>
+ march/2011
+
+ */
+
+#include <OneWire.h>
+OneWire ds(6); // OneWire bus on digital pin 6
+void setup() {
+ Serial.begin (9600);
+}
+
+void loop() {
+ byte i; // This is for the for loops
+ boolean present; // device present var
+ byte data[32]; // container for the data from device
+ byte leemem[3] = { // array with the commands to initiate a read, DS250x devices expect 3 bytes to start a read: command,LSB&MSB adresses
+ 0xF0 , 0x00 , 0x00 }; // 0xF0 is the Read Data command, followed by 00h 00h as starting address(the beginning, 0000h)
+ byte ccrc; // Variable to store the command CRC
+ byte ccrc_calc;
+
+ present = ds.reset(); // OneWire bus reset, always needed to start operation on the bus, returns a 1/TRUE if there's a device present.
+ ds.skip(); // Skip ROM search
+
+ if (present == TRUE){ // We only try to read the data if there's a device present
+ Serial.println("DS250x device present");
+ ds.write(leemem[0],1); // Read data command, leave ghost power on
+ ds.write(leemem[1],1); // LSB starting address, leave ghost power on
+ ds.write(leemem[2],1); // MSB starting address, leave ghost power on
+
+ ccrc = ds.read(); // DS250x generates a CRC for the command we sent, we assign a read slot and store it's value
+ ccrc_calc = OneWire::crc8(leemem, 3); // We calculate the CRC of the commands we sent using the library function and store it
+
+ if ( ccrc_calc != ccrc) { // Then we compare it to the value the ds250x calculated, if it fails, we print debug messages and abort
+ Serial.println("Invalid command CRC!");
+ Serial.print("Calculated CRC:");
+ Serial.println(ccrc_calc,HEX); // HEX makes it easier to observe and compare
+ Serial.print("DS250x readback CRC:");
+ Serial.println(ccrc,HEX);
+ return; // Since CRC failed, we abort the rest of the loop and start over
+ }
+ Serial.println("Data is: "); // For the printout of the data
+ for ( i = 0; i < 32; i++) { // Now it's time to read the PROM data itself, each page is 32 bytes so we need 32 read commands
+ data[i] = ds.read(); // we store each read byte to a different position in the data array
+ Serial.print(data[i]); // printout in ASCII
+ Serial.print(" "); // blank space
+ }
+ Serial.println();
+ delay(5000); // Delay so we don't saturate the serial output
+ }
+ else { // Nothing is connected in the bus
+ Serial.println("Nothing connected");
+ delay(3000);
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+\r
--- /dev/null
+#######################################
+# Syntax Coloring Map For OneWire
+#######################################
+
+#######################################
+# Datatypes (KEYWORD1)
+#######################################
+
+OneWire KEYWORD1
+
+#######################################
+# Methods and Functions (KEYWORD2)
+#######################################
+
+reset KEYWORD2
+write_bit KEYWORD2
+read_bit KEYWORD2
+write KEYWORD2
+write_bytes KEYWORD2
+read KEYWORD2
+read_bytes KEYWORD2
+select KEYWORD2
+skip KEYWORD2
+depower KEYWORD2
+reset_search KEYWORD2
+search KEYWORD2
+crc8 KEYWORD2
+crc16 KEYWORD2
+check_crc16 KEYWORD2
+
+#######################################
+# Instances (KEYWORD2)
+#######################################
+
+
+#######################################
+# Constants (LITERAL1)
+#######################################
--- /dev/null
+/********************************************************
+ * PID Adaptive Tuning Example
+ * One of the benefits of the PID library is that you can
+ * change the tuning parameters at any time. this can be
+ * helpful if we want the controller to be agressive at some
+ * times, and conservative at others. in the example below
+ * we set the controller to use Conservative Tuning Parameters
+ * when we're near setpoint and more agressive Tuning
+ * Parameters when we're farther away.
+ ********************************************************/
+
+#include <PID_v1.h>
+
+//Define Variables we'll be connecting to
+double Setpoint, Input, Output;
+
+//Define the aggressive and conservative Tuning Parameters
+double aggKp=4, aggKi=0.2, aggKd=1;
+double consKp=1, consKi=0.05, consKd=0.25;
+
+//Specify the links and initial tuning parameters
+PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT);
+
+void setup()
+{
+ //initialize the variables we're linked to
+ Input = analogRead(0);
+ Setpoint = 100;
+
+ //turn the PID on
+ myPID.SetMode(AUTOMATIC);
+}
+
+void loop()
+{
+ Input = analogRead(0);
+
+ double gap = abs(Setpoint-Input); //distance away from setpoint
+ if(gap<10)
+ { //we're close to setpoint, use conservative tuning parameters
+ myPID.SetTunings(consKp, consKi, consKd);
+ }
+ else
+ {
+ //we're far from setpoint, use aggressive tuning parameters
+ myPID.SetTunings(aggKp, aggKi, aggKd);
+ }
+
+ myPID.Compute();
+ analogWrite(3,Output);
+}
+
+
--- /dev/null
+/********************************************************
+ * PID Basic Example
+ * Reading analog input 0 to control analog PWM output 3
+ ********************************************************/
+
+#include <PID_v1.h>
+
+//Define Variables we'll be connecting to
+double Setpoint, Input, Output;
+
+//Specify the links and initial tuning parameters
+PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT);
+
+void setup()
+{
+ //initialize the variables we're linked to
+ Input = analogRead(0);
+ Setpoint = 100;
+
+ //turn the PID on
+ myPID.SetMode(AUTOMATIC);
+}
+
+void loop()
+{
+ Input = analogRead(0);
+ myPID.Compute();
+ analogWrite(3,Output);
+}
+
+
--- /dev/null
+/********************************************************
+ * PID RelayOutput Example
+ * Same as basic example, except that this time, the output
+ * is going to a digital pin which (we presume) is controlling
+ * a relay. the pid is designed to Output an analog value,
+ * but the relay can only be On/Off.
+ *
+ * to connect them together we use "time proportioning
+ * control" it's essentially a really slow version of PWM.
+ * first we decide on a window size (5000mS say.) we then
+ * set the pid to adjust its output between 0 and that window
+ * size. lastly, we add some logic that translates the PID
+ * output into "Relay On Time" with the remainder of the
+ * window being "Relay Off Time"
+ ********************************************************/
+
+#include <PID_v1.h>
+#define RelayPin 6
+
+//Define Variables we'll be connecting to
+double Setpoint, Input, Output;
+
+//Specify the links and initial tuning parameters
+PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT);
+
+int WindowSize = 5000;
+unsigned long windowStartTime;
+void setup()
+{
+ windowStartTime = millis();
+
+ //initialize the variables we're linked to
+ Setpoint = 100;
+
+ //tell the PID to range between 0 and the full window size
+ myPID.SetOutputLimits(0, WindowSize);
+
+ //turn the PID on
+ myPID.SetMode(AUTOMATIC);
+}
+
+void loop()
+{
+ Input = analogRead(0);
+ myPID.Compute();
+
+ /************************************************
+ * turn the output pin on/off based on pid output
+ ************************************************/
+ if(millis() - windowStartTime>WindowSize)
+ { //time to shift the Relay Window
+ windowStartTime += WindowSize;
+ }
+ if(Output < millis() - windowStartTime) digitalWrite(RelayPin,HIGH);
+ else digitalWrite(RelayPin,LOW);
+
+}
+
+
+
--- /dev/null
+/**********************************************************************************************
+ * Arduino PID Library - Version 1.0.1
+ * by Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
+ *
+ * This Library is licensed under a GPLv3 License
+ **********************************************************************************************/
+
+#if ARDUINO >= 100
+ #include "Arduino.h"
+#else
+ #include "WProgram.h"
+#endif
+
+#include <PID_v1.h>
+
+/*Constructor (...)*********************************************************
+ * The parameters specified here are those for for which we can't set up
+ * reliable defaults, so we need to have the user set them.
+ ***************************************************************************/
+PID::PID(double* Input, double* Output, double* Setpoint,
+ double Kp, double Ki, double Kd, int ControllerDirection)
+{
+
+ myOutput = Output;
+ myInput = Input;
+ mySetpoint = Setpoint;
+ inAuto = false;
+
+ PID::SetOutputLimits(0, 255); //default output limit corresponds to
+ //the arduino pwm limits
+
+ SampleTime = 100; //default Controller Sample Time is 0.1 seconds
+
+ PID::SetControllerDirection(ControllerDirection);
+ PID::SetTunings(Kp, Ki, Kd);
+
+ lastTime = millis()-SampleTime;
+}
+
+
+/* Compute() **********************************************************************
+ * This, as they say, is where the magic happens. this function should be called
+ * every time "void loop()" executes. the function will decide for itself whether a new
+ * pid Output needs to be computed. returns true when the output is computed,
+ * false when nothing has been done.
+ **********************************************************************************/
+bool PID::Compute()
+{
+ if(!inAuto) return false;
+ unsigned long now = millis();
+ unsigned long timeChange = (now - lastTime);
+ if(timeChange>=SampleTime)
+ {
+ /*Compute all the working error variables*/
+ double input = *myInput;
+ double error = *mySetpoint - input;
+ ITerm+= (ki * error);
+ if(ITerm > outMax) ITerm= outMax;
+ else if(ITerm < outMin) ITerm= outMin;
+ double dInput = (input - lastInput);
+
+ /*Compute PID Output*/
+ double output = kp * error + ITerm- kd * dInput;
+
+ if(output > outMax) output = outMax;
+ else if(output < outMin) output = outMin;
+ *myOutput = output;
+
+ /*Remember some variables for next time*/
+ lastInput = input;
+ lastTime = now;
+ return true;
+ }
+ else return false;
+}
+
+
+/* SetTunings(...)*************************************************************
+ * This function allows the controller's dynamic performance to be adjusted.
+ * it's called automatically from the constructor, but tunings can also
+ * be adjusted on the fly during normal operation
+ ******************************************************************************/
+void PID::SetTunings(double Kp, double Ki, double Kd)
+{
+ if (Kp<0 || Ki<0 || Kd<0) return;
+
+ dispKp = Kp; dispKi = Ki; dispKd = Kd;
+
+ double SampleTimeInSec = ((double)SampleTime)/1000;
+ kp = Kp;
+ ki = Ki * SampleTimeInSec;
+ kd = Kd / SampleTimeInSec;
+
+ if(controllerDirection ==REVERSE)
+ {
+ kp = (0 - kp);
+ ki = (0 - ki);
+ kd = (0 - kd);
+ }
+}
+
+/* SetSampleTime(...) *********************************************************
+ * sets the period, in Milliseconds, at which the calculation is performed
+ ******************************************************************************/
+void PID::SetSampleTime(int NewSampleTime)
+{
+ if (NewSampleTime > 0)
+ {
+ double ratio = (double)NewSampleTime
+ / (double)SampleTime;
+ ki *= ratio;
+ kd /= ratio;
+ SampleTime = (unsigned long)NewSampleTime;
+ }
+}
+
+/* SetOutputLimits(...)****************************************************
+ * This function will be used far more often than SetInputLimits. while
+ * the input to the controller will generally be in the 0-1023 range (which is
+ * the default already,) the output will be a little different. maybe they'll
+ * be doing a time window and will need 0-8000 or something. or maybe they'll
+ * want to clamp it from 0-125. who knows. at any rate, that can all be done
+ * here.
+ **************************************************************************/
+void PID::SetOutputLimits(double Min, double Max)
+{
+ if(Min >= Max) return;
+ outMin = Min;
+ outMax = Max;
+
+ if(inAuto)
+ {
+ if(*myOutput > outMax) *myOutput = outMax;
+ else if(*myOutput < outMin) *myOutput = outMin;
+
+ if(ITerm > outMax) ITerm= outMax;
+ else if(ITerm < outMin) ITerm= outMin;
+ }
+}
+
+/* SetMode(...)****************************************************************
+ * Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
+ * when the transition from manual to auto occurs, the controller is
+ * automatically initialized
+ ******************************************************************************/
+void PID::SetMode(int Mode)
+{
+ bool newAuto = (Mode == AUTOMATIC);
+ if(newAuto == !inAuto)
+ { /*we just went from manual to auto*/
+ PID::Initialize();
+ }
+ inAuto = newAuto;
+}
+
+/* Initialize()****************************************************************
+ * does all the things that need to happen to ensure a bumpless transfer
+ * from manual to automatic mode.
+ ******************************************************************************/
+void PID::Initialize()
+{
+ ITerm = *myOutput;
+ lastInput = *myInput;
+ if(ITerm > outMax) ITerm = outMax;
+ else if(ITerm < outMin) ITerm = outMin;
+}
+
+/* SetControllerDirection(...)*************************************************
+ * The PID will either be connected to a DIRECT acting process (+Output leads
+ * to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to
+ * know which one, because otherwise we may increase the output when we should
+ * be decreasing. This is called from the constructor.
+ ******************************************************************************/
+void PID::SetControllerDirection(int Direction)
+{
+ if(inAuto && Direction !=controllerDirection)
+ {
+ kp = (0 - kp);
+ ki = (0 - ki);
+ kd = (0 - kd);
+ }
+ controllerDirection = Direction;
+}
+
+/* Status Funcions*************************************************************
+ * Just because you set the Kp=-1 doesn't mean it actually happened. these
+ * functions query the internal state of the PID. they're here for display
+ * purposes. this are the functions the PID Front-end uses for example
+ ******************************************************************************/
+double PID::GetKp(){ return dispKp; }
+double PID::GetKi(){ return dispKi;}
+double PID::GetKd(){ return dispKd;}
+int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;}
+int PID::GetDirection(){ return controllerDirection;}
+
--- /dev/null
+#ifndef PID_v1_h
+#define PID_v1_h
+#define LIBRARY_VERSION 1.0.0
+
+class PID
+{
+
+
+ public:
+
+ //Constants used in some of the functions below
+ #define AUTOMATIC 1
+ #define MANUAL 0
+ #define DIRECT 0
+ #define REVERSE 1
+
+ //commonly used functions **************************************************************************
+ PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and
+ double, double, double, int); // Setpoint. Initial tuning parameters are also set here
+
+ void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0)
+
+ bool Compute(); // * performs the PID calculation. it should be
+ // called every time loop() cycles. ON/OFF and
+ // calculation frequency can be set using SetMode
+ // SetSampleTime respectively
+
+ void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
+ //it's likely the user will want to change this depending on
+ //the application
+
+
+
+ //available but not commonly used functions ********************************************************
+ void SetTunings(double, double, // * While most users will set the tunings once in the
+ double); // constructor, this function gives the user the option
+ // of changing tunings during runtime for Adaptive control
+ void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT
+ // means the output will increase when error is positive. REVERSE
+ // means the opposite. it's very unlikely that this will be needed
+ // once it is set in the constructor.
+ void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which
+ // the PID calculation is performed. default is 100
+
+
+
+ //Display functions ****************************************************************
+ double GetKp(); // These functions query the pid for interal values.
+ double GetKi(); // they were created mainly for the pid front-end,
+ double GetKd(); // where it's important to know what is actually
+ int GetMode(); // inside the PID.
+ int GetDirection(); //
+
+ private:
+ void Initialize();
+
+ double dispKp; // * we'll hold on to the tuning parameters in user-entered
+ double dispKi; // format for display purposes
+ double dispKd; //
+
+ double kp; // * (P)roportional Tuning Parameter
+ double ki; // * (I)ntegral Tuning Parameter
+ double kd; // * (D)erivative Tuning Parameter
+
+ int controllerDirection;
+
+ double *myInput; // * Pointers to the Input, Output, and Setpoint variables
+ double *myOutput; // This creates a hard link between the variables and the
+ double *mySetpoint; // PID, freeing the user from having to constantly tell us
+ // what these values are. with pointers we'll just know.
+
+ unsigned long lastTime;
+ double ITerm, lastInput;
+
+ unsigned long SampleTime;
+ double outMin, outMax;
+ bool inAuto;
+};
+#endif
+
--- /dev/null
+#######################################
+# Syntax Coloring Map For PID Library
+#######################################
+
+#######################################
+# Datatypes (KEYWORD1)
+#######################################
+
+PID KEYWORD1
+
+#######################################
+# Methods and Functions (KEYWORD2)
+#######################################
+
+SetMode KEYWORD2
+Compute KEYWORD2
+SetOutputLimits KEYWORD2
+SetTunings KEYWORD2
+SetControllerDirection KEYWORD2
+SetSampleTime KEYWORD2
+GetKp KEYWORD2
+GetKi KEYWORD2
+GetKd KEYWORD2
+GetMode KEYWORD2
+GetDirection KEYWORD2
+
+#######################################
+# Constants (LITERAL1)
+#######################################
+
+AUTOMATIC LITERAL1
+MANUAL LITERAL1
+DIRECT LITERAL1
+REVERSE LITERAL1
\ No newline at end of file
--- /dev/null
+install the required libraries by copying directories
+OneWire and PID_v1 to $(HOME)/Arduino/libraries
--- /dev/null
+#!/usr/bin/perl
+
+package this;
+
+
+
+
+
+use strict;
+use warnings;
+
+
+use POSIX qw/strftime/;
+use POSIX;
+use CGI ':standard';
+use CGI::Carp qw(fatalsToBrowser);
+use Data::Dumper;
+use Pod::Usage;
+use serial_communication;
+# use manage_settings;
+# use Switch;
+
+
+
+my $self = this->new();
+$self->main();
+
+
+## methods
+
+sub new {
+ my $class = shift;
+ my %options = @_;
+
+ my $self = {}; # put tons of default values here (if you wish);
+
+ $self->{constants} = {
+
+ };
+
+ $self = {
+ %$self,
+ %options
+ };
+ bless($self, $class);
+ return $self;
+}
+
+
+sub main {
+ # go to other methods from here
+ my $self = shift;
+
+ # receive CGI query
+ $self->{query} = CGI->new();
+ my $action = $self->{query}->param('action') || "help";
+
+ # go only to methods that are in the following dispatch table:
+ # if associated value is one, sub can be called via CGI
+ $self->{dispatch} = {
+ help => 1,
+ test => 1,
+ read_register => 1,
+ write_register => 1,
+ find_baseline => 1,
+ signal_range => 1,
+ count => 1
+ };
+
+ # if method exists, execute it, if not complain and show help message
+ if ($self->{dispatch}->{$action} ) {
+ my $args = $self->CGI_parameters();
+
+ # here the corresponding method is called
+ my $return = $self->$action(%$args);
+ # does it return anything?
+ if(defined($return)){ # we get a return value
+ if(ref(\$return) eq "SCALAR"){ # just print it if it is a scalar
+ print "$return\n";
+ } else { # use Data::Dumper to display a hash
+ print "method returns a hash:\n";
+ print Dumper $return;
+ }
+ }
+ } else {
+ print "$action is not a valid action!\n\n";
+ $self->help(1);
+ }
+}
+
+
+
+sub setup_serial {
+ my $self = shift;
+ # create new register IO object, with CGI parameters "tty" and "baudrate"
+ my $regio_options = $self->CGI_parameters(items => ["tty","baudrate"]);
+ $self->{serial} = regio->new(%$regio_options);
+}
+
+
+sub help {
+ my $self = shift;
+ my $verbose = shift;
+# print "This is the help message!\n";
+ pod2usage(verbose => $verbose);
+ exit;
+
+}
+sub test {
+ my $self = shift;
+ my %options = @_;
+ print "This is the test message!\n";
+ print "The test routine has received the following options:\n\n";
+
+ for my $item ( keys %options ) {
+ print "key: $item\tvalue: ".$options{$item}."\n";
+ }
+ exit;
+
+}
+
+
+sub CGI_parameters {
+ # for each item on the list, get the
+ # designated parameter from the CGI query and
+ # store it in the target hash IF the parameter is
+ # defined in the query!
+
+ my $self = shift;
+ my %options = @_;
+ my $query = $self->{query};
+ my $items = $options{items};
+ # target can be left undefined, then a new hash is created
+ # and returned
+ my $target;
+ $target = $options{target} if defined($options{target});
+
+
+ if(defined($items)){ # if there is a list of parameters
+ for my $item (@{$items}){
+ if(defined($query->param($item))){
+ $target->{$item} = $query->param($item);
+ }
+ }
+ } else { # if there is no list of parameters
+ # extract all parameters
+ for my $item($query->param) {
+ $target->{$item} = $query->param($item);
+ }
+ }
+ return $target;
+}
+
+
+
--- /dev/null
+##################################################
+## serial communication ##
+##################################################
+
+package serial_communication;
+
+use Time::HiRes;
+use Device::SerialPort;
+
+sub new {
+ my $class = shift;
+ my %options = @_;
+ my $self = {};
+
+ # set some defaults
+ $self->{baudrate} = 115200; #does not matter for virtual comports
+ $self->{tty} = "/dev/ttyACM0";
+
+ # partially overwrite defaults with options
+ $self = {
+ %$self,
+ %options
+ };
+
+ bless($self, $class);
+
+ $self->{port} = new Device::SerialPort($self->{tty});
+ unless ($self->{port})
+ {
+ die "can't open serial interface ".$self->{tty}."\n";
+ }
+
+ $self->{port}->user_msg('ON');
+ $self->{port}->baudrate($self->{baudrate});
+ $self->{port}->parity("none");
+ $self->{port}->databits(8);
+ $self->{port}->stopbits(1);
+ $self->{port}->handshake("none");
+ $self->{port}->write_settings;
+
+ return $self;
+}
+
+
+
+
+# sub read {
+# my $self = shift;
+# my $addr = shift;
+# my $val = $self->communicate("R".chr($addr));
+# printf("response: %d\n",$val) if $self->{verbose};
+# return $val;
+# }
+#
+# sub write {
+# my $self = shift;
+# my $addr = shift;
+# my $value = shift;
+#
+# print "send addr:$addr value:$value\n" if $self->{verbose};
+#
+# my $byte3 = chr(int($value)>>24);
+# my $byte2 = chr((int($value)>>16)&0xFF);
+# my $byte1 = chr((int($value)>>8)&0xFF);
+# my $byte0 = chr(int($value)&0xFF);
+#
+# $self->communicate("W".chr($addr).$byte3.$byte2.$byte1.$byte0);
+# }
+
+
+# sub communicate {
+# my $self = shift;
+# my $command = shift;
+#
+# my $ack_timeout=0.5;
+# my $rstring;
+#
+# $self->{port}->are_match("");
+# $self->{port}->read_char_time(1); # avg time between read char
+# $self->{port}->read_const_time(0); # const time for read (milliseconds)
+# $self->{port}->lookclear;
+# $self->{port}->write("$command\n");
+#
+# my $ack = 0;
+#
+# my ($count, $a) = $self->{port}->read(12);# blocks until the read is complete or a Timeout occurs.
+#
+# if($a=~ m/R(.{4})/s) {
+# $rstring= $1;
+# $ack=1;
+# }
+#
+# if($ack){
+# # my $byte3 = ord(substr($rstring,0,1));
+# # my $byte2 = ord(substr($rstring,1,1));
+# # my $byte1 = ord(substr($rstring,2,1));
+# # my $byte0 = ord(substr($rstring,3,1));
+# # my $val = (($byte3<<24)|($byte2<<16)|($byte1<<8)|$byte0);
+# my $val = unpack('l',reverse pack('a4',substr($rstring,0,4)));
+# return $val;
+# } else {
+# print "no answer\n" if $self->{verbose};
+# }
+# }
+
+
+sub communicate {
+
+ my $command = $_[0]; # variable not used
+
+
+
+ $port->lookclear;
+
+
+
+ # read what has accumulated in the serial buffer
+ # do max .5 seconds of polling
+ my $temp;
+ my $pid;
+ my $setpoint;
+
+ for (my $i = 0; ($i<200) ;$i++) {
+ my $a = $port->lookfor;
+ unless(defined($temp)){
+ if( $a =~ m/Temperature = ([\+\-0-9\.]+) Celsius/) {
+ $temp = $1;
+ }
+ } else {
+ if( $a =~ m/PID Output = ([\+\-0-9\.]+)/) {
+ $pid = $1;
+ return ($temp,$pid);
+ }
+ }
+ Time::HiRes::sleep(.01);
+ }
+ return {temp => $temp, pid => $pid, setpoint => $setpoint}
+}
+
+
+
+
+
+
+
+
+
+
+
+
+1;
\ No newline at end of file