+++ /dev/null
-Subproject commit 79d115427dc03e0f81c89fbc4c88987791d3f74c
--- /dev/null
+#include "MagnetSensor.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float* SensX, float* SensY, float* SensZ)
+{
+
+ // Write register command, AH = 0x00, AL = 0x5C, Hall plate spinning rate = DEFAULT, GAIN_SEL = 5(0x60, 0x00, 0x5C, 0x00)
+ // Address register, (0x00 << 2)
+ uint8_t txBuffer[4] = {0x60,0x00,0x5C,0x00};
+ uint8_t status;uint8_t status2;
+ uint8_t ReadReg[3];
+ uint8_t Gain,Res_x,Res_y,Res_z;
+
+
+ txBuffer[0] = 0x60;
+ txBuffer[1] = 0x00;
+ txBuffer[2] = 0x5C;
+ txBuffer[3] = 0x00;
+
+ status2 = twi_writeTo(Addr, txBuffer, 4,1, true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ // Write register command, AH = 0x02, AL = 0xB4, RES for magnetic measurement = 1(0x60, 0x02, 0xB4, 0x08)
+ // Address register, (0x02 << 2)
+ txBuffer[1] = 0x02;
+ txBuffer[2] = 0xB4;
+ txBuffer[3] = 0x08;
+ twi_writeTo(Addr,txBuffer,4,1,true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ txBuffer[0] = 0x50;
+ txBuffer[1] = 0x90;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+ uint16_t T_ref = ReadReg[1]<<8 | ReadReg[2];
+ *Tref = T_ref;
+ //Read Gain;
+ txBuffer[1] = 0x00;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Gain = (ReadReg[2] & 0x70) >>4;
+
+ //Read Resolution;
+ txBuffer[1] = 0x08; //Read Gain;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Res_x = (ReadReg[1] & 0x6) >>1;
+ Res_y = ((ReadReg[1] & 0x1) << 1)|((ReadReg[2] & 0x80) >>7);
+ Res_z = (ReadReg[2] & 0x60) >>5;
+
+ *SensX = SensitivityXY(Gain,Res_x);
+ *SensY = SensitivityXY(Gain,Res_y);
+ *SensZ = SensitivityZ(Gain,Res_z);
+
+ return status2;
+}
+
+
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ){
+ uint8_t MagData[9] = {255,255,255,255,255,255,255,255,255};
+ char s[30];
+
+ char Num[2];
+ sprintf(Num,"%1u",Addr-12);
+
+ uint8_t dataTest = 0x3F; // Start Single Measurement
+ twi_writeTo(Addr,&dataTest,1,1, true);
+
+ uint8_t status_1;
+ twi_readFrom(Addr, &status_1, 1, true);
+
+ _delay_ms(100);
+
+ uint8_t testdata2 = 0x4F;// Read Measured Values
+ twi_writeTo(Addr, &testdata2, 1, 1, true);
+ twi_readFrom(Addr,MagData, 9, true);
+ if (MagData[0] == 3) {
+ uint16_t tMag = (uint16_t)( MagData[1] * 256 + MagData[2]);
+ int16_t xMag = MagData[3] * 256 + MagData[4];
+ int16_t yMag = MagData[5] * 256 + MagData[6];
+ int16_t zMag = MagData[7] * 256 + MagData[8];
+ int16_t temp_temp = (uint16_t)(tMag) - (uint16_t)(Tref);
+ float Temperature = 35.0 + (temp_temp/45.2);
+ uputs("M");uputs(Num);uputs("_T ");
+ sprintf(s,"%4.2f",Temperature);
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_X ");
+ sprintf(s,"%4.3f",((float)xMag*(*SensX))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Y ");
+ sprintf(s,"%4.3f",((float)yMag*(*SensY))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Z ");
+ sprintf(s,"%4.3f",((float)zMag*(*SensZ))); //muT
+ uputsnl(s);
+ uputs("ERR Mag ");uputs(Num);uputsnl(" NO"); // ERROR INFORMATION FOR EPICS
+ } else {
+ uputs("ERR Mag ");uputs(Num);uputsnl(" CONNECTION");
+ }
+}
+
+float SensitivityXY(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ /*if (Gain != 0) {
+ for (int i=1; i<=Gain;i++){
+ if (i<3) {
+ logVal = 1;
+ } else if (i<5) {
+ logVal = 2;
+ } else {
+ logVal = 3;
+ }
+ Sens = roundf((Sens - 0.161/((float)logVal)) * 1000) / 1000;
+ }
+ sprintf(s,"LOG: %f",Sens);
+ uputsnl(s);
+ }*/
+
+ switch(Gain) {
+ case 0: Sens=0.805; break;
+ case 1: Sens=0.644; break;
+ case 2: Sens=0.483; break;
+ case 3: Sens=0.403; break;
+ case 4: Sens=0.322; break;
+ case 5: Sens=0.268; break;
+ case 6: Sens=0.215; break;
+ default: Sens=0.161; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
+
+float SensitivityZ(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ switch(Gain) {
+ case 0: Sens=1.468; break;
+ case 1: Sens=1.174; break;
+ case 2: Sens=0.881; break;
+ case 3: Sens=0.734; break;
+ case 4: Sens=0.587; break;
+ case 5: Sens=0.489; break;
+ case 6: Sens=0.391; break;
+ default: Sens=0.294; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
--- /dev/null
+#include "MagnetSensor.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float* SensX, float* SensY, float* SensZ)
+{
+
+ // Write register command, AH = 0x00, AL = 0x5C, Hall plate spinning rate = DEFAULT, GAIN_SEL = 5(0x60, 0x00, 0x5C, 0x00)
+ // Address register, (0x00 << 2)
+ uint8_t txBuffer[4] = {0x60,0x00,0x5C,0x00};
+ uint8_t status;uint8_t status2;
+ uint8_t ReadReg[3];
+ uint8_t Gain,Res_x,Res_y,Res_z;
+
+
+ txBuffer[0] = 0x60;
+ txBuffer[1] = 0x00;
+ txBuffer[2] = 0x5C;
+ txBuffer[3] = 0x00;
+
+ status2 = twi_writeTo(Addr, txBuffer, 4,1, true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ // Write register command, AH = 0x02, AL = 0xB4, RES for magnetic measurement = 1(0x60, 0x02, 0xB4, 0x08)
+ // Address register, (0x02 << 2)
+ txBuffer[1] = 0x02;
+ txBuffer[2] = 0xB4;
+ txBuffer[3] = 0x08;
+ twi_writeTo(Addr,txBuffer,4,1,true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ txBuffer[0] = 0x50;
+ txBuffer[1] = 0x90;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+ uint16_t T_ref = ReadReg[1]<<8 | ReadReg[2];
+ *Tref = T_ref;
+uputsnl("Test51");
+ //Read Gain;
+ txBuffer[1] = 0x00;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Gain = (ReadReg[2] & 0x70) >>4;
+
+ //Read Resolution;
+ txBuffer[1] = 0x08; //Read Gain;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Res_x = (ReadReg[1] & 0x6) >>1;
+ Res_y = ((ReadReg[1] & 0x1) << 1)|((ReadReg[2] & 0x80) >>7);
+ Res_z = (ReadReg[2] & 0x60) >>5;
+
+ *SensX = SensitivityXY(Gain,Res_x);
+ *SensY = SensitivityXY(Gain,Res_y);
+ *SensZ = SensitivityZ(Gain,Res_z);
+
+ return status2;
+}
+
+
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ){
+ uint8_t MagData[9] = {255,255,255,255,255,255,255,255,255};
+ char s[30];
+
+ char Num[2];
+ sprintf(Num,"%1u",Addr-12);
+
+ uint8_t dataTest = 0x3F; // Start Single Measurement
+ twi_writeTo(Addr,&dataTest,1,1, true);
+
+ uint8_t status_1;
+ twi_readFrom(Addr, &status_1, 1, true);
+
+ _delay_ms(100);
+
+ uint8_t testdata2 = 0x4F;// Read Measured Values
+ twi_writeTo(Addr, &testdata2, 1, 1, true);
+ twi_readFrom(Addr,MagData, 9, true);
+ if (MagData[0] == 3) {
+ uint16_t tMag = (uint16_t)( MagData[1] * 256 + MagData[2]);
+ int16_t xMag = MagData[3] * 256 + MagData[4];
+ int16_t yMag = MagData[5] * 256 + MagData[6];
+ int16_t zMag = MagData[7] * 256 + MagData[8];
+ int16_t temp_temp = (uint16_t)(tMag) - (uint16_t)(Tref);
+ float Temperature = 35.0 + (temp_temp/45.2);
+ uputs("M");uputs(Num);uputs("_T ");
+ sprintf(s,"%4.2f",Temperature);
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_X ");
+ sprintf(s,"%4.3f",((float)xMag*(*SensX))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Y ");
+ sprintf(s,"%4.3f",((float)yMag*(*SensY))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Z ");
+ sprintf(s,"%4.3f",((float)zMag*(*SensZ))); //muT
+ uputsnl(s);
+ uputs("ERR Mag ");uputs(Num);uputsnl(" NO"); // ERROR INFORMATION FOR EPICS
+ } else {
+ uputs("ERR Mag ");uputs(Num);uputsnl(" CONNECTION");
+ }
+}
+
+float SensitivityXY(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ /*if (Gain != 0) {
+ for (int i=1; i<=Gain;i++){
+ if (i<3) {
+ logVal = 1;
+ } else if (i<5) {
+ logVal = 2;
+ } else {
+ logVal = 3;
+ }
+ Sens = roundf((Sens - 0.161/((float)logVal)) * 1000) / 1000;
+ }
+ sprintf(s,"LOG: %f",Sens);
+ uputsnl(s);
+ }*/
+
+ switch(Gain) {
+ case 0: Sens=0.805; break;
+ case 1: Sens=0.644; break;
+ case 2: Sens=0.483; break;
+ case 3: Sens=0.403; break;
+ case 4: Sens=0.322; break;
+ case 5: Sens=0.268; break;
+ case 6: Sens=0.215; break;
+ default: Sens=0.161; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
+
+float SensitivityZ(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ switch(Gain) {
+ case 0: Sens=1.468; break;
+ case 1: Sens=1.174; break;
+ case 2: Sens=0.881; break;
+ case 3: Sens=0.734; break;
+ case 4: Sens=0.587; break;
+ case 5: Sens=0.489; break;
+ case 6: Sens=0.391; break;
+ default: Sens=0.294; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
--- /dev/null
+#include "main.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float *SensX, float* SensY, float *SensZ);
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ);
+float SensitivityXY(uint8_t Gain, uint8_t Res);
+float SensitivityZ(uint8_t Gain, uint8_t Res);
--- /dev/null
+#include "main.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float *SensX, float* SensY, float *SensZ);
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ);
+float SensitivityXY(uint8_t Gain, uint8_t Res);
+float SensitivityZ(uint8_t Gain, uint8_t Res);
--- /dev/null
+# Hey Emacs, this is a -*- makefile -*-\r
+\r
+# AVR-GCC Makefile template, derived from the WinAVR template (which\r
+# is public domain), believed to be neutral to any flavor of "make"\r
+# (GNU make, BSD make, SysV make)\r
+\r
+\r
+MCU = atmega168p\r
+FORMAT = ihex\r
+TARGET = main\r
+SRC = $(TARGET).c uart/uart.c twi/twi.c MagnetSensor.c\r
+ASRC = \r
+OPT = 2\r
+\r
+# Name of this Makefile (used for "make depend").\r
+MAKEFILE = Makefile\r
+\r
+# Debugging format.\r
+# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.\r
+# AVR (extended) COFF requires stabs, plus an avr-objcopy run.\r
+DEBUG = stabs\r
+\r
+# Compiler flag to set the C Standard level.\r
+# c89 - "ANSI" C\r
+# gnu89 - c89 plus GCC extensions\r
+# c99 - ISO C99 standard (not yet fully implemented)\r
+# gnu99 - c99 plus GCC extensions\r
+CSTANDARD = -std=gnu99\r
+\r
+# Place -D or -U options here\r
+CDEFS = -DF_CPU=16000000\r
+\r
+# Place -I options here\r
+CINCS =\r
+\r
+\r
+CDEBUG = -g$(DEBUG)\r
+CWARN = -Wall -Wstrict-prototypes \r
+CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wl,--relax\r
+#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)\r
+CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) $(CTUNING)\r
+\r
+\r
+#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs \r
+\r
+\r
+#Additional libraries.\r
+\r
+# Minimalistic printf version\r
+PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min\r
+\r
+# Floating point printf version (requires MATH_LIB = -lm below)\r
+PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt\r
+\r
+PRINTF_LIB = \r
+\r
+# Minimalistic scanf version\r
+SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min\r
+\r
+# Floating point + %[ scanf version (requires MATH_LIB = -lm below)\r
+SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt\r
+\r
+SCANF_LIB = \r
+\r
+MATH_LIB = -lm\r
+\r
+# External memory options\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# used for variables (.data/.bss) and heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# only used for heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+EXTMEMOPTS =\r
+\r
+#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref\r
+LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB_FLOAT) $(SCANF_LIB) $(MATH_LIB)\r
+\r
+\r
+# Programming support using avrdude. Settings and variables.\r
+\r
+AVRDUDE_PROGRAMMER = dragon_jtag\r
+AVRDUDE_PORT = usb\r
+\r
+AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex\r
+#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep\r
+\r
+\r
+# Uncomment the following if you want avrdude's erase cycle counter.\r
+# Note that this counter needs to be initialized first using -Yn,\r
+# see avrdude manual.\r
+#AVRDUDE_ERASE_COUNTER = -y\r
+\r
+# Uncomment the following if you do /not/ wish a verification to be\r
+# performed after programming the device.\r
+AVRDUDE_NO_VERIFY = -V\r
+\r
+# Increase verbosity level. Please use this when submitting bug\r
+# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude> \r
+# to submit bug reports.\r
+#AVRDUDE_VERBOSE = -v -v\r
+\r
+AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)\r
+AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)\r
+\r
+\r
+CC = avr-gcc\r
+OBJCOPY = avr-objcopy\r
+OBJDUMP = avr-objdump\r
+SIZE = avr-size\r
+NM = avr-nm\r
+AVRDUDE = avrdude\r
+REMOVE = rm -f\r
+MV = mv -f\r
+\r
+# Define all object files.\r
+OBJ = $(SRC:.c=.o) $(ASRC:.S=.o) \r
+\r
+# Define all listing files.\r
+LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)\r
+\r
+# Combine all necessary flags and optional flags.\r
+# Add target processor to flags.\r
+ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)\r
+ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)\r
+\r
+\r
+# Default target.\r
+all: build\r
+\r
+build: elf hex eep\r
+\r
+elf: $(TARGET).elf\r
+hex: $(TARGET).hex\r
+eep: $(TARGET).eep\r
+lss: $(TARGET).lss \r
+sym: $(TARGET).sym\r
+\r
+\r
+# Program the device. \r
+program: $(TARGET).hex $(TARGET).eep\r
+ $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)\r
+\r
+\r
+size: \r
+ $(SIZE) -C --mcu=$(MCU) $(TARGET).elf \r
+\r
+# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.\r
+COFFCONVERT=$(OBJCOPY) --debugging \\r
+--change-section-address .data-0x800000 \\r
+--change-section-address .bss-0x800000 \\r
+--change-section-address .noinit-0x800000 \\r
+--change-section-address .eeprom-0x810000 \r
+\r
+\r
+coff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+extcoff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+.SUFFIXES: .elf .hex .eep .lss .sym\r
+\r
+.elf.hex:\r
+ $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@\r
+\r
+.elf.eep:\r
+ -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \\r
+ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@\r
+\r
+# Create extended listing file from ELF output file.\r
+.elf.lss:\r
+ $(OBJDUMP) -h -S $< > $@\r
+\r
+# Create a symbol table from ELF output file.\r
+.elf.sym:\r
+ $(NM) -n $< > $@\r
+\r
+\r
+\r
+# Link: create ELF output file from object files.\r
+$(TARGET).elf: $(OBJ)\r
+ $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)\r
+\r
+\r
+# Compile: create object files from C source files.\r
+.c.o:\r
+ $(CC) -c $(ALL_CFLAGS) $< -o $@ \r
+\r
+\r
+# Compile: create assembler files from C source files.\r
+.c.s:\r
+ $(CC) -S $(ALL_CFLAGS) $< -o $@\r
+\r
+\r
+# Assemble: create object files from assembler source files.\r
+.S.o:\r
+ $(CC) -c $(ALL_ASFLAGS) $< -o $@\r
+\r
+\r
+\r
+# Target: clean project.\r
+clean:\r
+ $(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \\r
+ $(TARGET).map $(TARGET).sym $(TARGET).lss \\r
+ $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)\r
+\r
+depend:\r
+ if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \\r
+ then \\r
+ sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \\r
+ $(MAKEFILE).$$$$ && \\r
+ $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \\r
+ fi\r
+ echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \\r
+ >> $(MAKEFILE); \\r
+ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)\r
+\r
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend program_bootloader program_arduino program_leo\r
+\r
+program_bootloader: all\r
+ dfu-programmer $(MCU) erase && dfu-programmer $(MCU) flash $(TARGET).hex && dfu-programmer $(MCU) start\r
+\r
+# program_arduino: all\r
+# avrdude -patmega32u4 -cavr109 -P$(PORT) -b 57600 -D -Uflash:w:$(TARGET).hex:i\r
+\r
+program_leo: all\r
+ avrdude -patmega32u4 -cavr109 -P/dev/ttyACM0 -b57600 -D -Uflash:w:$(TARGET).hex:i\r
--- /dev/null
+# Hey Emacs, this is a -*- makefile -*-\r
+\r
+# AVR-GCC Makefile template, derived from the WinAVR template (which\r
+# is public domain), believed to be neutral to any flavor of "make"\r
+# (GNU make, BSD make, SysV make)\r
+\r
+\r
+MCU = atmega168pa\r
+FORMAT = ihex\r
+TARGET = main\r
+SRC = $(TARGET).c uart/uart.c twi/twi.c MagnetSensor.c\r
+ASRC = \r
+OPT = 2\r
+\r
+# Name of this Makefile (used for "make depend").\r
+MAKEFILE = Makefile\r
+\r
+# Debugging format.\r
+# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.\r
+# AVR (extended) COFF requires stabs, plus an avr-objcopy run.\r
+DEBUG = stabs\r
+\r
+# Compiler flag to set the C Standard level.\r
+# c89 - "ANSI" C\r
+# gnu89 - c89 plus GCC extensions\r
+# c99 - ISO C99 standard (not yet fully implemented)\r
+# gnu99 - c99 plus GCC extensions\r
+CSTANDARD = -std=gnu99\r
+\r
+# Place -D or -U options here\r
+CDEFS = -DF_CPU=16000000\r
+\r
+# Place -I options here\r
+CINCS =\r
+\r
+\r
+CDEBUG = -g$(DEBUG)\r
+CWARN = -Wall -Wstrict-prototypes \r
+CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wl,--relax\r
+#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)\r
+CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) $(CTUNING)\r
+\r
+\r
+#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs \r
+\r
+\r
+#Additional libraries.\r
+\r
+# Minimalistic printf version\r
+PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min\r
+\r
+# Floating point printf version (requires MATH_LIB = -lm below)\r
+PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt\r
+\r
+PRINTF_LIB = \r
+\r
+# Minimalistic scanf version\r
+SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min\r
+\r
+# Floating point + %[ scanf version (requires MATH_LIB = -lm below)\r
+SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt\r
+\r
+SCANF_LIB = \r
+\r
+MATH_LIB = -lm\r
+\r
+# External memory options\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# used for variables (.data/.bss) and heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# only used for heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+EXTMEMOPTS =\r
+\r
+#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref\r
+LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB_FLOAT) $(SCANF_LIB) $(MATH_LIB)\r
+\r
+\r
+# Programming support using avrdude. Settings and variables.\r
+\r
+AVRDUDE_PROGRAMMER = dragon_jtag\r
+AVRDUDE_PORT = usb\r
+\r
+AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex\r
+#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep\r
+\r
+\r
+# Uncomment the following if you want avrdude's erase cycle counter.\r
+# Note that this counter needs to be initialized first using -Yn,\r
+# see avrdude manual.\r
+#AVRDUDE_ERASE_COUNTER = -y\r
+\r
+# Uncomment the following if you do /not/ wish a verification to be\r
+# performed after programming the device.\r
+AVRDUDE_NO_VERIFY = -V\r
+\r
+# Increase verbosity level. Please use this when submitting bug\r
+# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude> \r
+# to submit bug reports.\r
+#AVRDUDE_VERBOSE = -v -v\r
+\r
+AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)\r
+AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)\r
+\r
+\r
+CC = avr-gcc\r
+OBJCOPY = avr-objcopy\r
+OBJDUMP = avr-objdump\r
+SIZE = avr-size\r
+NM = avr-nm\r
+AVRDUDE = avrdude\r
+REMOVE = rm -f\r
+MV = mv -f\r
+\r
+# Define all object files.\r
+OBJ = $(SRC:.c=.o) $(ASRC:.S=.o) \r
+\r
+# Define all listing files.\r
+LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)\r
+\r
+# Combine all necessary flags and optional flags.\r
+# Add target processor to flags.\r
+ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)\r
+ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)\r
+\r
+\r
+# Default target.\r
+all: build\r
+\r
+build: elf hex eep\r
+\r
+elf: $(TARGET).elf\r
+hex: $(TARGET).hex\r
+eep: $(TARGET).eep\r
+lss: $(TARGET).lss \r
+sym: $(TARGET).sym\r
+\r
+\r
+# Program the device. \r
+program: $(TARGET).hex $(TARGET).eep\r
+ $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)\r
+\r
+\r
+size: \r
+ $(SIZE) -C --mcu=$(MCU) $(TARGET).elf \r
+\r
+# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.\r
+COFFCONVERT=$(OBJCOPY) --debugging \\r
+--change-section-address .data-0x800000 \\r
+--change-section-address .bss-0x800000 \\r
+--change-section-address .noinit-0x800000 \\r
+--change-section-address .eeprom-0x810000 \r
+\r
+\r
+coff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+extcoff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+.SUFFIXES: .elf .hex .eep .lss .sym\r
+\r
+.elf.hex:\r
+ $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@\r
+\r
+.elf.eep:\r
+ -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \\r
+ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@\r
+\r
+# Create extended listing file from ELF output file.\r
+.elf.lss:\r
+ $(OBJDUMP) -h -S $< > $@\r
+\r
+# Create a symbol table from ELF output file.\r
+.elf.sym:\r
+ $(NM) -n $< > $@\r
+\r
+\r
+\r
+# Link: create ELF output file from object files.\r
+$(TARGET).elf: $(OBJ)\r
+ $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)\r
+\r
+\r
+# Compile: create object files from C source files.\r
+.c.o:\r
+ $(CC) -c $(ALL_CFLAGS) $< -o $@ \r
+\r
+\r
+# Compile: create assembler files from C source files.\r
+.c.s:\r
+ $(CC) -S $(ALL_CFLAGS) $< -o $@\r
+\r
+\r
+# Assemble: create object files from assembler source files.\r
+.S.o:\r
+ $(CC) -c $(ALL_ASFLAGS) $< -o $@\r
+\r
+\r
+\r
+# Target: clean project.\r
+clean:\r
+ $(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \\r
+ $(TARGET).map $(TARGET).sym $(TARGET).lss \\r
+ $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)\r
+\r
+depend:\r
+ if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \\r
+ then \\r
+ sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \\r
+ $(MAKEFILE).$$$$ && \\r
+ $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \\r
+ fi\r
+ echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \\r
+ >> $(MAKEFILE); \\r
+ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)\r
+\r
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend program_bootloader program_arduino program_leo\r
+\r
+program_bootloader: all\r
+ dfu-programmer $(MCU) erase && dfu-programmer $(MCU) flash $(TARGET).hex && dfu-programmer $(MCU) start\r
+\r
+# program_arduino: all\r
+# avrdude -patmega32u4 -cavr109 -P$(PORT) -b 57600 -D -Uflash:w:$(TARGET).hex:i\r
+\r
+program_leo: all\r
+ avrdude -patmega32u4 -cavr109 -P/dev/ttyACM0 -b57600 -D -Uflash:w:$(TARGET).hex:i\r
--- /dev/null
+/*\r
+ * main.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+#include "main.h"\r
+\r
+\r
+int main(void)\r
+{ char s[30];\r
+ uint8_t Status[4]={0,0,0,0};\r
+ uint8_t Status_Mag[4]={0,0,0,0};\r
+ uint16_t TRef[4]={0,0,0,0};\r
+ float SensX[4];\r
+ float SensY[4];\r
+ float SensZ[4];\r
+ \r
+ //For CLK setting\r
+ CLKPR = (0<<CLKPCE); // No prescale\r
+ CLKPR = 0x00; //prescaler 2\r
+ PRR = 0;\r
+ //Init UART\r
+ uinit();\r
+\r
+ //Init I2C/TWI\r
+ twi_init();\r
+\r
+ //Init Magnetic field Sensor\r
+ Status[0] = InitMagSensor(ADDR_MAG_0, &TRef[0], &SensX[0], &SensY[0], &SensZ[0]);\r
+ Status[1] = InitMagSensor(ADDR_MAG_1, &TRef[1], &SensX[1], &SensY[1], &SensZ[1]);\r
+ Status[2] = InitMagSensor(ADDR_MAG_2, &TRef[2], &SensX[2], &SensY[2], &SensZ[2]);\r
+ Status[3] = InitMagSensor(ADDR_MAG_3, &TRef[3], &SensX[3], &SensY[3], &SensZ[3]);\r
+\r
+ // sprintf(s,"%u", Status[0]);\r
+ //uputs(s);\r
+ _delay_ms(300);\r
+\r
+ while (1)\r
+ { \r
+ if (Status[0] == 0) { MeasureMagSens(ADDR_MAG_0, TRef[0], &SensX[0], &SensY[0], &SensZ[0]);}\r
+ else { uputsnl("ERR Mag 0 NO_DEVICE"); }\r
+ if (Status[1] == 0) { MeasureMagSens(ADDR_MAG_1, TRef[1], &SensX[1], &SensY[1], &SensZ[1]);}\r
+ else { uputsnl("ERR Mag 1 NO_DEVICE"); }\r
+ if (Status[2] == 0) { MeasureMagSens(ADDR_MAG_2, TRef[2], &SensX[2], &SensY[2], &SensZ[2]);}\r
+ else { uputsnl("ERR Mag 2 NO_DEVICE"); }\r
+ if (Status[3] == 0) { MeasureMagSens(ADDR_MAG_3, TRef[3], &SensX[3], &SensY[3], &SensZ[3]);}\r
+ else { uputsnl("ERR Mag 3 NO_DEVICE"); }\r
+\r
+ _delay_ms(500);\r
+\r
+ }\r
+ cli();\r
+ return 0;\r
+}\r
+\r
--- /dev/null
+/*\r
+ * main.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+#include "main.h"\r
+\r
+\r
+int main(void)\r
+{ char s[30];\r
+ uint8_t Status[4]={0,0,0,0};\r
+ uint8_t Status_Mag[4]={0,0,0,0};\r
+ uint16_t TRef[4]={0,0,0,0};\r
+ float SensX[4];\r
+ float SensY[4];\r
+ float SensZ[4];\r
+ \r
+ //For CLK setting\r
+ CLKPR = (0<<CLKPCE); // No prescale\r
+ CLKPR = 0x00; //prescaler 2\r
+ PRR = 0;\r
+ //Init UART\r
+ uinit();\r
+\r
+ //Init I2C/TWI\r
+ twi_init();\r
+\r
+ //Init Magnetic field Sensor\r
+ Status[0] = InitMagSensor(ADDR_MAG_0, &TRef[0], &SensX[0], &SensY[0], &SensZ[0]);\r
+ Status[1] = InitMagSensor(ADDR_MAG_1, &TRef[1], &SensX[1], &SensY[1], &SensZ[1]);\r
+ Status[2] = InitMagSensor(ADDR_MAG_2, &TRef[2], &SensX[2], &SensY[2], &SensZ[2]);\r
+ Status[3] = InitMagSensor(ADDR_MAG_3, &TRef[3], &SensX[3], &SensY[3], &SensZ[3]);\r
+\r
+ // sprintf(s,"%u", Status[0]);\r
+ //uputs(s);\r
+ _delay_ms(300);\r
+\r
+ while (1)\r
+ { \r
+ /*if (Status[0] == 0) { */MeasureMagSens(ADDR_MAG_0, TRef[0], &SensX[0], &SensY[0], &SensZ[0]);/*}\r
+ else { uputsnl("ERR Mag 0 NO_DEVICE"); }\r
+ if (Status[1] == 0) { MeasureMagSens(ADDR_MAG_1, TRef[1], &SensX[1], &SensY[1], &SensZ[1]);}\r
+ else { uputsnl("ERR Mag 1 NO_DEVICE"); }\r
+ if (Status[2] == 0) { MeasureMagSens(ADDR_MAG_2, TRef[2], &SensX[2], &SensY[2], &SensZ[2]);}\r
+ else { uputsnl("ERR Mag 2 NO_DEVICE"); }\r
+ if (Status[3] == 0) { MeasureMagSens(ADDR_MAG_3, TRef[3], &SensX[3], &SensY[3], &SensZ[3]);}\r
+ else { uputsnl("ERR Mag 3 NO_DEVICE"); }*/\r
+\r
+ _delay_ms(500);\r
+\r
+ }\r
+ cli();\r
+ return 0;\r
+}\r
+\r
--- /dev/null
+/*\r
+ * main.h\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+\r
+#ifndef MAIN_H_\r
+#define MAIN_H_\r
+\r
+#include <avr/io.h>\r
+#include <util/delay.h>\r
+#include <string.h>\r
+#include <stdlib.h>\r
+#include <stdio.h>\r
+#include <stdint.h>\r
+#include <stdbool.h>\r
+#include <inttypes.h>\r
+#include <math.h>\r
+#include "uart/uart.h"\r
+#include "MagnetSensor.h"\r
+#include "twi/twi.h"\r
+#include <avr/interrupt.h>\r
+#include <avr/pgmspace.h>\r
+\r
+\r
+#ifndef F_CPU\r
+#define F_CPU 16000000\r
+#endif\r
+\r
+# define USART_BAUDRATE 19200\r
+# define BAUD_PRESCALE (unsigned int)(1.0 * F_CPU / USART_BAUDRATE / 16 - 0.5);\r
+\r
+#define ADDR_MAG_0 0x0C\r
+#define ADDR_MAG_1 0x0D\r
+#define ADDR_MAG_2 0x0E\r
+#define ADDR_MAG_3 0x0F\r
+\r
+\r
+\r
+\r
+#ifndef __AVR_ATmega168P__\r
+#define __AVR_ATmega168P__\r
+#endif /* MAIN_H_ */\r
+\r
+\r
+#endif\r
--- /dev/null
+/*\r
+ * main.h\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+\r
+#ifndef MAIN_H_\r
+#define MAIN_H_\r
+\r
+#include <avr/io.h>\r
+#include <util/delay.h>\r
+#include <string.h>\r
+#include <stdlib.h>\r
+#include <stdio.h>\r
+#include <stdint.h>\r
+#include <stdbool.h>\r
+#include <inttypes.h>\r
+#include <math.h>\r
+#include "uart/uart.h"\r
+#include "MagnetSensor.h"\r
+#include "twi/twi.h"\r
+#include <avr/interrupt.h>\r
+#include <avr/pgmspace.h>\r
+\r
+\r
+#ifndef F_CPU\r
+#define F_CPU 16000000\r
+#endif\r
+\r
+# define USART_BAUDRATE 19200\r
+# define BAUD_PRESCALE (unsigned int)(1.0 * F_CPU / USART_BAUDRATE / 16 - 0.5);\r
+\r
+#define ADDR_MAG_0 0x0C\r
+#define ADDR_MAG_1 0x0D\r
+#define ADDR_MAG_2 0x0E\r
+#define ADDR_MAG_3 0x0F\r
+\r
+\r
+\r
+\r
+#ifndef __AVR_ATmega168PA__\r
+#define __AVR_ATmega168PA__\r
+#endif /* MAIN_H_ */\r
+\r
+\r
+#endif\r
--- /dev/null
+This project is made for a ATmega168Pa with 16MHz/5V.
+
+It is tested on a Pro Mini Developement board.
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+#include "uart.h"\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (1 << PD0);\r
+ PORTD |= (1 << PD1);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (0 << PD0);\r
+ PORTD |= (0 << PD1);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ sei();\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ sei();\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (0 << PD0);\r
+ PORTD |= (0 << PD1);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*
+ twi.h - TWI/I2C library for Wiring & Arduino
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#ifndef twi_h
+#define twi_h
+ #include <inttypes.h>
+
+ #ifndef TWI_FREQ
+ #define TWI_FREQ 100000L
+ #endif
+
+ #ifndef TWI_BUFFER_LENGTH
+ #define TWI_BUFFER_LENGTH 32
+ #endif
+
+ #define TWI_READY 0
+ #define TWI_MRX 1
+ #define TWI_MTX 2
+ #define TWI_SRX 3
+ #define TWI_STX 4
+
+ void twi_init(void);
+ void twi_disable(void);
+ void twi_setAddress(uint8_t);
+ void twi_setFrequency(uint32_t);
+ uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
+ uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
+ uint8_t twi_transmit(const uint8_t*, uint8_t);
+ void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
+ void twi_attachSlaveTxEvent( void (*)(void) );
+ void twi_reply(uint8_t);
+ void twi_stop(void);
+ void twi_releaseBus(void);
+
+#endif
+
--- /dev/null
+/*
+ twi.h - TWI/I2C library for Wiring & Arduino
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#ifndef twi_h
+#define twi_h
+ #include <inttypes.h>
+
+ //#define ATMEGA8
+
+ #ifndef TWI_FREQ
+ #define TWI_FREQ 100000L
+ #endif
+
+ #ifndef TWI_BUFFER_LENGTH
+ #define TWI_BUFFER_LENGTH 32
+ #endif
+
+ #define TWI_READY 0
+ #define TWI_MRX 1
+ #define TWI_MTX 2
+ #define TWI_SRX 3
+ #define TWI_STX 4
+
+ void twi_init(void);
+ void twi_disable(void);
+ void twi_setAddress(uint8_t);
+ void twi_setFrequency(uint32_t);
+ uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
+ uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
+ uint8_t twi_transmit(const uint8_t*, uint8_t);
+ void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
+ void twi_attachSlaveTxEvent( void (*)(void) );
+ void twi_reply(uint8_t);
+ void twi_stop(void);
+ void twi_releaseBus(void);
+
+#endif
+
--- /dev/null
+/******************************************************************************\r
+SparkFunBME280.cpp\r
+BME280 Arduino and Teensy Driver\r
+Marshall Taylor @ SparkFun Electronics\r
+May 20, 2015\r
+https://github.com/sparkfun/BME280_Breakout\r
+\r
+Resources:\r
+Uses Wire.h for i2c operation\r
+Uses SPI.h for SPI operation\r
+\r
+Development environment specifics:\r
+Arduino IDE 1.6.4\r
+Teensy loader 1.23\r
+\r
+This code is released under the [MIT License](http://opensource.org/licenses/MIT).\r
+Please review the LICENSE.md file included with this example. If you have any questions \r
+or concerns with licensing, please contact techsupport@sparkfun.com.\r
+Distributed as-is; no warranty is given.\r
+******************************************************************************/\r
+//See SparkFunBME280.h for additional topology notes.\r
+\r
+#include "SparkFunBME280.h"\r
+#include "stdint.h"\r
+#include <math.h>\r
+#include "twi.h"\r
+\r
+//****************************************************************************//\r
+//\r
+// Settings and configuration\r
+//\r
+//****************************************************************************//\r
+\r
+//Constructor -- Specifies default configuration\r
+/*BME280::BME280( void )\r
+{\r
+ //Construct with these default settings if nothing is specified\r
+\r
+ //Select interface mode\r
+ settings.commInterface = I2C_MODE; //Can be I2C_MODE, SPI_MODE\r
+ //Select address for I2C. Does nothing for SPI\r
+ settings.I2CAddress = 0x77; //Ignored for SPI_MODE\r
+ //Select CS pin for SPI. Does nothing for I2C\r
+ settings.chipSelectPin = 10;\r
+ settings.runMode = 0;\r
+ settings.tempOverSample = 0;\r
+ settings.pressOverSample = 0;\r
+ settings.humidOverSample = 0;\r
+\r
+}\r
+*/\r
+\r
+//****************************************************************************//\r
+//\r
+// Configuration section\r
+//\r
+// This uses the stored SensorSettings to start the IMU\r
+// Use statements such as "mySensor.settings.commInterface = SPI_MODE;" to \r
+// configure before calling .begin();\r
+//\r
+//****************************************************************************//\r
+uint8_t InitBME(BME280* bme280){\r
+\r
+ uint8_t dataToWrite = 0; //Temporary variable\r
+ \r
+ //Reading all compensation data, range 0x88:A1, 0xE1:E7\r
+ \r
+ bme280->calibration.dig_T1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_LSB_REG)));\r
+ bme280->calibration.dig_T2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_LSB_REG)));\r
+ bme280->calibration.dig_T3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_LSB_REG)));\r
+\r
+ bme280->calibration.dig_P1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_LSB_REG)));\r
+ bme280->calibration.dig_P2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_LSB_REG)));\r
+ bme280->calibration.dig_P3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_LSB_REG)));\r
+ bme280->calibration.dig_P4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_LSB_REG)));\r
+ bme280->calibration.dig_P5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_LSB_REG)));\r
+ bme280->calibration.dig_P6 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_LSB_REG)));\r
+ bme280->calibration.dig_P7 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_LSB_REG)));\r
+ bme280->calibration.dig_P8 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_LSB_REG)));\r
+ bme280->calibration.dig_P9 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_LSB_REG)));\r
+\r
+ bme280->calibration.dig_H1 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H1_REG)));\r
+ bme280->calibration.dig_H2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_LSB_REG)));\r
+ bme280->calibration.dig_H3 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H3_REG)));\r
+ bme280->calibration.dig_H4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_MSB_REG) << 4) + (readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) & 0x0F)));\r
+ bme280->calibration.dig_H5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H5_MSB_REG) << 4) + ((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) >> 4) & 0x0F)));\r
+ bme280->calibration.dig_H6 = ((uint8_t)readRegister(bme280->settings.I2CAddress,BME280_DIG_H6_REG)); \r
+\r
+//Set the oversampling control words.\r
+ //config will only be writeable in sleep mode, so first insure that.\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, 0x00);\r
+\r
+ \r
+ //Set the config word\r
+ dataToWrite = (bme280->settings.tStandby << 0x5) & 0xE0;\r
+ dataToWrite |= (bme280->settings.filter << 0x02) & 0x1C;\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CONFIG_REG, dataToWrite);\r
+\r
+ \r
+ //Set ctrl_hum first, then ctrl_meas to activate ctrl_hum\r
+ dataToWrite = bme280->settings.humidOverSample & 0x07; //all other bits can be ignored\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_HUMIDITY_REG, dataToWrite);\r
+\r
+ \r
+ //set ctrl_meas\r
+ //First, set temp oversampling\r
+ dataToWrite = (bme280->settings.tempOverSample << 0x5) & 0xE0;\r
+ //Next, pressure oversampling\r
+\r
+ dataToWrite |= (bme280->settings.pressOverSample << 0x02) & 0x1C;\r
+ //Last, set mode\r
+ dataToWrite |= (bme280->settings.runMode) & 0x03;\r
+ //Load the byte\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, dataToWrite);\r
+\r
+ return readRegister(bme280->settings.I2CAddress,0xD0);\r
+}\r
+\r
+\r
+//Strictly resets. Run .begin() afterwards\r
+void reset( BME280* bme280)\r
+{\r
+ writeRegister(bme280->settings.I2CAddress,BME280_RST_REG, 0xB6);\r
+ \r
+}\r
+\r
+//****************************************************************************//\r
+//\r
+// Pressure Section\r
+//\r
+//****************************************************************************//\r
+float readFloatPressure( BME280 *bme280)\r
+{\r
+\r
+ // Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 fractional bits).\r
+ // Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa\r
+ int32_t adc_P = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_MSB_REG) << 12) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_LSB_REG) << 4) | ((readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_XLSB_REG) >> 4) & 0x0F);\r
+ \r
+ int64_t var1, var2, p_acc;\r
+ var1 = ((int64_t)bme280->t_fine) - 128000;\r
+ var2 = var1 * var1 * (int64_t)bme280->calibration.dig_P6;\r
+ var2 = var2 + ((var1 * (int64_t)bme280->calibration.dig_P5)<<17);\r
+ var2 = var2 + (((int64_t)bme280->calibration.dig_P4)<<35);\r
+ var1 = ((var1 * var1 * (int64_t)bme280->calibration.dig_P3)>>8) + ((var1 * (int64_t)bme280->calibration.dig_P2)<<12);\r
+ var1 = (((((int64_t)1)<<47)+var1))*((int64_t)bme280->calibration.dig_P1)>>33;\r
+ if (var1 == 0)\r
+ {\r
+ return 0; // avoid exception caused by division by zero\r
+ }\r
+ p_acc = 1048576 - adc_P;\r
+ p_acc = (((p_acc<<31) - var2)*3125)/var1;\r
+ var1 = (((int64_t)bme280->calibration.dig_P9) * (p_acc>>13) * (p_acc>>13)) >> 25;\r
+ var2 = (((int64_t)bme280->calibration.dig_P8) * p_acc) >> 19;\r
+ p_acc = ((p_acc + var1 + var2) >> 8) + (((int64_t)bme280->calibration.dig_P7)<<4);\r
+ \r
+ return (float)p_acc / 256.0;\r
+ \r
+}\r
+/*\r
+float readFloatAltitudeMeters( BME280* bme280 )\r
+{\r
+ float heightOutput = 0;\r
+ \r
+ heightOutput = ((float)-45846.2)*(pow(((float)readFloatPressure(&bme280)/(float)101325), 0.190263) - (float)1);\r
+ return heightOutput;\r
+ \r
+}\r
+\r
+float readFloatAltitudeFeet( BME280* bme280 )\r
+{\r
+ float heightOutput = 0;\r
+ \r
+ heightOutput = readFloatAltitudeMeters( &bme280) * 3.28084;\r
+ return heightOutput;\r
+ \r
+}\r
+*/\r
+//****************************************************************************//\r
+//\r
+// Humidity Section\r
+//\r
+//****************************************************************************//\r
+float readFloatHumidity( BME280* bme280 )\r
+{\r
+ \r
+ // Returns humidity in %RH as unsigned 32 bit integer in Q22. 10 format (22 integer and 10 fractional bits).\r
+ // Output value of “47445” represents 47445/1024 = 46. 333 %RH\r
+ int32_t adc_H = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_HUMIDITY_MSB_REG) << 8) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_HUMIDITY_LSB_REG));\r
+ \r
+ int32_t var1;\r
+ var1 = (bme280->t_fine - ((int32_t)76800));\r
+ var1 = (((((adc_H << 14) - (((int32_t)bme280->calibration.dig_H4) << 20) - (((int32_t)bme280->calibration.dig_H5) * var1)) +\r
+ ((int32_t)16384)) >> 15) * (((((((var1 * ((int32_t)bme280->calibration.dig_H6)) >> 10) * (((var1 * ((int32_t)bme280->calibration.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) *\r
+ ((int32_t)bme280->calibration.dig_H2) + 8192) >> 14));\r
+ var1 = (var1 - (((((var1 >> 15) * (var1 >> 15)) >> 7) * ((int32_t)bme280->calibration.dig_H1)) >> 4));\r
+ var1 = (var1 < 0 ? 0 : var1);\r
+ var1 = (var1 > 419430400 ? 419430400 : var1);\r
+\r
+ return (float)(var1>>12) / 1024.0;\r
+\r
+}\r
+\r
+\r
+\r
+//****************************************************************************//\r
+//\r
+// Temperature Section\r
+//\r
+//****************************************************************************//\r
+\r
+float readTempC( BME280* bme280 )\r
+{\r
+ // Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.\r
+ // t_fine carries fine temperature as global value\r
+\r
+ //get the reading (adc_T);\r
+ int32_t adc_T = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_MSB_REG) << 12) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_LSB_REG) << 4) | ((readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_XLSB_REG) >> 4) & 0x0F);\r
+\r
+ //By datasheet, calibrate\r
+ int64_t var1, var2;\r
+\r
+ var1 = ((((adc_T>>3) - ((int32_t)bme280->calibration.dig_T1<<1))) * ((int32_t)bme280->calibration.dig_T2)) >> 11;\r
+ var2 = (((((adc_T>>4) - ((int32_t)bme280->calibration.dig_T1)) * ((adc_T>>4) - ((int32_t)bme280->calibration.dig_T1))) >> 12) *\r
+ ((int32_t)bme280->calibration.dig_T3)) >> 14;\r
+ bme280->t_fine = var1 + var2;\r
+ float output = (bme280->t_fine * 5 + 128) >> 8;\r
+\r
+ output = output / 100;\r
+ \r
+ return output;\r
+}\r
+\r
+/*float readTempF( BME280* bme280 )\r
+{\r
+ float output = readTempC(&bme280);\r
+ output = (output * 9) / 5 + 32;\r
+\r
+ return output;\r
+}*/\r
+\r
+//****************************************************************************//\r
+//\r
+// Utility\r
+//\r
+//****************************************************************************//\r
+void readRegisterRegion(uint8_t Addr, uint8_t *outputPointer , uint8_t offset, uint8_t length)\r
+{\r
+ //define pointer that will point to the external space\r
+ ///uint8_t i = 0;\r
+ uint8_t c = 0;\r
+ twi_writeTo(Addr,&offset,1,1,true);\r
+\r
+ for(int i = 0 ; i<length;i++){\r
+ // request bytes from slave device\r
+ if (i < length-1){\r
+ twi_readFrom(Addr, &c, 1, false);\r
+ }else {\r
+ twi_readFrom(Addr, &c, 1, true);\r
+ }\r
+ *outputPointer = c;\r
+ outputPointer++;\r
+ }\r
+\r
+}\r
+\r
+uint8_t readRegister(uint8_t Addr, uint8_t offset)\r
+{\r
+ //Return value\r
+ uint8_t result;\r
+\r
+ twi_writeTo(Addr, &offset,1,1,true);\r
+ twi_readFrom(Addr, &result, 1, true);\r
+\r
+ \r
+ return result;\r
+}\r
+\r
+int16_t readRegisterInt16(uint8_t Addr, uint8_t offset )\r
+{\r
+ uint8_t myBuffer[2];\r
+ readRegisterRegion(Addr, myBuffer, offset, 2); //Does memory transfer\r
+ int16_t output = (int16_t)myBuffer[0] | (int16_t)(myBuffer[1] << 8);\r
+ \r
+ return output;\r
+}\r
+\r
+void writeRegister(uint8_t Addr,uint8_t offset, uint8_t dataToWrite)\r
+{\r
+ //Write the byte\r
+ uint8_t value[2];\r
+ value[0]=offset;\r
+ value[1]=dataToWrite;\r
+ twi_writeTo(Addr,value,2,1,true);\r
+}\r
--- /dev/null
+#include "main.h"
+#include <util/delay.h>
+#include "twi.h"
+#include <inttypes.h>
+
+enum
+ {
+ BME280_REGISTER_DIG_T1 = 0x88,
+ BME280_REGISTER_DIG_T2 = 0x8A,
+ BME280_REGISTER_DIG_T3 = 0x8C,
+
+ BME280_REGISTER_DIG_P1 = 0x8E,
+ BME280_REGISTER_DIG_P2 = 0x90,
+ BME280_REGISTER_DIG_P3 = 0x92,
+ BME280_REGISTER_DIG_P4 = 0x94,
+ BME280_REGISTER_DIG_P5 = 0x96,
+ BME280_REGISTER_DIG_P6 = 0x98,
+ BME280_REGISTER_DIG_P7 = 0x9A,
+ BME280_REGISTER_DIG_P8 = 0x9C,
+ BME280_REGISTER_DIG_P9 = 0x9E,
+
+ BME280_REGISTER_DIG_H1 = 0xA1,
+ BME280_REGISTER_DIG_H2 = 0xE1,
+ BME280_REGISTER_DIG_H3 = 0xE3,
+ BME280_REGISTER_DIG_H4 = 0xE4,
+ BME280_REGISTER_DIG_H5 = 0xE5,
+ BME280_REGISTER_DIG_H6 = 0xE7,
+
+ BME280_REGISTER_CHIPID = 0xD0,
+ BME280_REGISTER_VERSION = 0xD1,
+ BME280_REGISTER_SOFTRESET = 0xE0,
+
+ BME280_REGISTER_CAL26 = 0xE1, // R calibration stored in 0xE1-0xF0
+
+ BME280_REGISTER_CONTROLHUMID = 0xF2,
+ BME280_REGISTER_STATUS = 0XF3,
+ BME280_REGISTER_CONTROL = 0xF4,
+ BME280_REGISTER_CONFIG = 0xF5,
+ BME280_REGISTER_PRESSUREDATA = 0xF7,
+ BME280_REGISTER_TEMPDATA = 0xFA,
+ BME280_REGISTER_HUMIDDATA = 0xFD
+};
+
+
+
+typedef struct
+ {
+ uint16_t dig_T1;
+ int16_t dig_T2;
+ int16_t dig_T3;
+
+ uint16_t dig_P1;
+ int16_t dig_P2;
+ int16_t dig_P3;
+ int16_t dig_P4;
+ int16_t dig_P5;
+ int16_t dig_P6;
+ int16_t dig_P7;
+ int16_t dig_P8;
+ int16_t dig_P9;
+
+ uint8_t dig_H1;
+ int16_t dig_H2;
+ uint8_t dig_H3;
+ int16_t dig_H4;
+ int16_t dig_H5;
+ int8_t dig_H6;
+} bme280_calib_data;
+
+bme280_calib_data _bme280_calib;
+
+void setSampling();
+
+uint8_t InitBME280(uint8_t Addr);
+bool BME280isReadingCalibration(uint8_t Addr);
+void readCoefficients(uint8_t Addr);
+
+
+void write8(uint8_t Addr,uint8_t reg, uint8_t value);
+uint8_t read8(uint8_t Addr, uint8_t reg);
+int16_t readS16(uint8_t Addr, uint8_t reg);
+uint16_t read16(uint8_t Addr, uint8_t reg);
+uint16_t read16_LE(uint8_t Addr, uint8_t reg);
+int16_t readS16_LE(uint8_t Addr, uint8_t reg);
+uint32_t read24(uint8_t Addr, uint8_t reg);
+int32_t readTemperature(uint8_t Addr);
+int64_t readPressure(uint8_t Addr);
+uint32_t readHumidity(uint8_t Addr);
--- /dev/null
+#include "MagnetSensor.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float* SensX, float* SensY, float* SensZ)
+{
+
+ // Write register command, AH = 0x00, AL = 0x5C, Hall plate spinning rate = DEFAULT, GAIN_SEL = 5(0x60, 0x00, 0x5C, 0x00)
+ // Address register, (0x00 << 2)
+ uint8_t txBuffer[4] = {0x60,0x00,0x5C,0x00};
+ uint8_t status;uint8_t status2;
+ uint8_t ReadReg[3];
+ uint8_t Gain,Res_x,Res_y,Res_z;
+
+
+ txBuffer[0] = 0x60;
+ txBuffer[1] = 0x00;
+ txBuffer[2] = 0x5C;
+ txBuffer[3] = 0x00;
+
+ status2 = twi_writeTo(Addr, txBuffer, 4,1, true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ // Write register command, AH = 0x02, AL = 0xB4, RES for magnetic measurement = 1(0x60, 0x02, 0xB4, 0x08)
+ // Address register, (0x02 << 2)
+ txBuffer[1] = 0x02;
+ txBuffer[2] = 0xB4;
+ txBuffer[3] = 0x08;
+ twi_writeTo(Addr,txBuffer,4,1,true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ txBuffer[0] = 0x50;
+ txBuffer[1] = 0x90;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+ uint16_t T_ref = ReadReg[1]<<8 | ReadReg[2];
+ *Tref = T_ref;
+ //Read Gain;
+ txBuffer[1] = 0x00;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Gain = (ReadReg[2] & 0x70) >>4;
+
+ //Read Resolution;
+ txBuffer[1] = 0x08; //Read Gain;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Res_x = (ReadReg[1] & 0x6) >>1;
+ Res_y = ((ReadReg[1] & 0x1) << 1)|((ReadReg[2] & 0x80) >>7);
+ Res_z = (ReadReg[2] & 0x60) >>5;
+
+ *SensX = SensitivityXY(Gain,Res_x);
+ *SensY = SensitivityXY(Gain,Res_y);
+ *SensZ = SensitivityZ(Gain,Res_z);
+
+ return status2;
+}
+
+
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ){
+ uint8_t MagData[9] = {255,255,255,255,255,255,255,255,255};
+ char s[30];
+
+ char Num[2];
+ sprintf(Num,"%1u",Addr-12);
+
+ uint8_t dataTest = 0x3F; // Start Single Measurement
+ twi_writeTo(Addr,&dataTest,1,1, true);
+
+ uint8_t status_1;
+ twi_readFrom(Addr, &status_1, 1, true);
+
+ _delay_ms(100);
+
+ uint8_t testdata2 = 0x4F;// Read Measured Values
+ twi_writeTo(Addr, &testdata2, 1, 1, true);
+ twi_readFrom(Addr,MagData, 9, true);
+ if (MagData[0] == 3) {
+ uint16_t tMag = (uint16_t)( MagData[1] * 256 + MagData[2]);
+ int16_t xMag = MagData[3] * 256 + MagData[4];
+ int16_t yMag = MagData[5] * 256 + MagData[6];
+ int16_t zMag = MagData[7] * 256 + MagData[8];
+ int16_t temp_temp = (uint16_t)(tMag) - (uint16_t)(Tref);
+ float Temperature = 35.0 + (temp_temp/45.2);
+ uputs("M");uputs(Num);uputs("_T ");
+ sprintf(s,"%4.2f",Temperature);
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_X ");
+ sprintf(s,"%4.3f",((float)xMag*(*SensX))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Y ");
+ sprintf(s,"%4.3f",((float)yMag*(*SensY))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Z ");
+ sprintf(s,"%4.3f",((float)zMag*(*SensZ))); //muT
+ uputsnl(s);
+ uputs("ERR Mag ");uputs(Num);uputsnl(" NO"); // ERROR INFORMATION FOR EPICS
+ } else {
+ uputs("ERR Mag ");uputs(Num);uputsnl(" CONNECTION");
+ }
+}
+
+float SensitivityXY(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ /*if (Gain != 0) {
+ for (int i=1; i<=Gain;i++){
+ if (i<3) {
+ logVal = 1;
+ } else if (i<5) {
+ logVal = 2;
+ } else {
+ logVal = 3;
+ }
+ Sens = roundf((Sens - 0.161/((float)logVal)) * 1000) / 1000;
+ }
+ sprintf(s,"LOG: %f",Sens);
+ uputsnl(s);
+ }*/
+
+ switch(Gain) {
+ case 0: Sens=0.805; break;
+ case 1: Sens=0.644; break;
+ case 2: Sens=0.483; break;
+ case 3: Sens=0.403; break;
+ case 4: Sens=0.322; break;
+ case 5: Sens=0.268; break;
+ case 6: Sens=0.215; break;
+ default: Sens=0.161; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
+
+float SensitivityZ(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ switch(Gain) {
+ case 0: Sens=1.468; break;
+ case 1: Sens=1.174; break;
+ case 2: Sens=0.881; break;
+ case 3: Sens=0.734; break;
+ case 4: Sens=0.587; break;
+ case 5: Sens=0.489; break;
+ case 6: Sens=0.391; break;
+ default: Sens=0.294; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
--- /dev/null
+#include "MagnetSensor.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float* SensX, float* SensY, float* SensZ)
+{
+
+ // Write register command, AH = 0x00, AL = 0x5C, Hall plate spinning rate = DEFAULT, GAIN_SEL = 5(0x60, 0x00, 0x5C, 0x00)
+ // Address register, (0x00 << 2)
+ uint8_t txBuffer[4] = {0x60,0x00,0x5C,0x00};
+ uint8_t status;uint8_t status2;
+ uint8_t ReadReg[3];
+ uint8_t Gain,Res_x,Res_y,Res_z;
+
+
+ txBuffer[0] = 0x60;
+ txBuffer[1] = 0x00;
+ txBuffer[2] = 0x5C;
+ txBuffer[3] = 0x00;
+
+ status2 = twi_writeTo(Addr, txBuffer, 4,1, true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ // Write register command, AH = 0x02, AL = 0xB4, RES for magnetic measurement = 1(0x60, 0x02, 0xB4, 0x08)
+ // Address register, (0x02 << 2)
+ txBuffer[1] = 0x02;
+ txBuffer[2] = 0xB4;
+ txBuffer[3] = 0x08;
+ twi_writeTo(Addr,txBuffer,4,1,true);
+ twi_readFrom(Addr, &status, 1, true);
+
+ txBuffer[0] = 0x50;
+ txBuffer[1] = 0x90;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+ uint16_t T_ref = ReadReg[1]<<8 | ReadReg[2];
+ *Tref = T_ref;
+uputsnl("Test51");
+ //Read Gain;
+ txBuffer[1] = 0x00;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Gain = (ReadReg[2] & 0x70) >>4;
+
+ //Read Resolution;
+ txBuffer[1] = 0x08; //Read Gain;
+ twi_writeTo(Addr,txBuffer,2,1,true);
+ twi_readFrom(Addr, ReadReg, 3, true);
+
+ Res_x = (ReadReg[1] & 0x6) >>1;
+ Res_y = ((ReadReg[1] & 0x1) << 1)|((ReadReg[2] & 0x80) >>7);
+ Res_z = (ReadReg[2] & 0x60) >>5;
+
+ *SensX = SensitivityXY(Gain,Res_x);
+ *SensY = SensitivityXY(Gain,Res_y);
+ *SensZ = SensitivityZ(Gain,Res_z);
+
+ return status2;
+}
+
+
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ){
+ uint8_t MagData[9] = {255,255,255,255,255,255,255,255,255};
+ char s[30];
+
+ char Num[2];
+ sprintf(Num,"%1u",Addr-12);
+
+ uint8_t dataTest = 0x3F; // Start Single Measurement
+ twi_writeTo(Addr,&dataTest,1,1, true);
+
+ uint8_t status_1;
+ twi_readFrom(Addr, &status_1, 1, true);
+
+ _delay_ms(100);
+
+ uint8_t testdata2 = 0x4F;// Read Measured Values
+ twi_writeTo(Addr, &testdata2, 1, 1, true);
+ twi_readFrom(Addr,MagData, 9, true);
+ if (MagData[0] == 3) {
+ uint16_t tMag = (uint16_t)( MagData[1] * 256 + MagData[2]);
+ int16_t xMag = MagData[3] * 256 + MagData[4];
+ int16_t yMag = MagData[5] * 256 + MagData[6];
+ int16_t zMag = MagData[7] * 256 + MagData[8];
+ int16_t temp_temp = (uint16_t)(tMag) - (uint16_t)(Tref);
+ float Temperature = 35.0 + (temp_temp/45.2);
+ uputs("M");uputs(Num);uputs("_T ");
+ sprintf(s,"%4.2f",Temperature);
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_X ");
+ sprintf(s,"%4.3f",((float)xMag*(*SensX))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Y ");
+ sprintf(s,"%4.3f",((float)yMag*(*SensY))); //muT
+ uputsnl(s);
+ uputs("M");uputs(Num);uputs("_Z ");
+ sprintf(s,"%4.3f",((float)zMag*(*SensZ))); //muT
+ uputsnl(s);
+ uputs("ERR Mag ");uputs(Num);uputsnl(" NO"); // ERROR INFORMATION FOR EPICS
+ } else {
+ uputs("ERR Mag ");uputs(Num);uputsnl(" CONNECTION");
+ }
+}
+
+float SensitivityXY(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ /*if (Gain != 0) {
+ for (int i=1; i<=Gain;i++){
+ if (i<3) {
+ logVal = 1;
+ } else if (i<5) {
+ logVal = 2;
+ } else {
+ logVal = 3;
+ }
+ Sens = roundf((Sens - 0.161/((float)logVal)) * 1000) / 1000;
+ }
+ sprintf(s,"LOG: %f",Sens);
+ uputsnl(s);
+ }*/
+
+ switch(Gain) {
+ case 0: Sens=0.805; break;
+ case 1: Sens=0.644; break;
+ case 2: Sens=0.483; break;
+ case 3: Sens=0.403; break;
+ case 4: Sens=0.322; break;
+ case 5: Sens=0.268; break;
+ case 6: Sens=0.215; break;
+ default: Sens=0.161; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
+
+float SensitivityZ(uint8_t Gain, uint8_t Res){
+ float Sens =0.805;
+ switch(Gain) {
+ case 0: Sens=1.468; break;
+ case 1: Sens=1.174; break;
+ case 2: Sens=0.881; break;
+ case 3: Sens=0.734; break;
+ case 4: Sens=0.587; break;
+ case 5: Sens=0.489; break;
+ case 6: Sens=0.391; break;
+ default: Sens=0.294; break;
+ }
+
+
+ return Sens*(float)pow(2,Res);
+}
--- /dev/null
+#include "main.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float *SensX, float* SensY, float *SensZ);
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ);
+float SensitivityXY(uint8_t Gain, uint8_t Res);
+float SensitivityZ(uint8_t Gain, uint8_t Res);
--- /dev/null
+#include "main.h"
+
+uint8_t InitMagSensor(uint8_t Addr, uint16_t* Tref, float *SensX, float* SensY, float *SensZ);
+void MeasureMagSens(uint8_t Addr, uint16_t Tref, float* SensX, float* SensY, float* SensZ);
+float SensitivityXY(uint8_t Gain, uint8_t Res);
+float SensitivityZ(uint8_t Gain, uint8_t Res);
--- /dev/null
+# Hey Emacs, this is a -*- makefile -*-\r
+\r
+# AVR-GCC Makefile template, derived from the WinAVR template (which\r
+# is public domain), believed to be neutral to any flavor of "make"\r
+# (GNU make, BSD make, SysV make)\r
+\r
+\r
+MCU = atmega168p\r
+FORMAT = ihex\r
+TARGET = main\r
+SRC = $(TARGET).c uart/uart.c twi/twi.c MagnetSensor.c\r
+ASRC = \r
+OPT = 2\r
+\r
+# Name of this Makefile (used for "make depend").\r
+MAKEFILE = Makefile\r
+\r
+# Debugging format.\r
+# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.\r
+# AVR (extended) COFF requires stabs, plus an avr-objcopy run.\r
+DEBUG = stabs\r
+\r
+# Compiler flag to set the C Standard level.\r
+# c89 - "ANSI" C\r
+# gnu89 - c89 plus GCC extensions\r
+# c99 - ISO C99 standard (not yet fully implemented)\r
+# gnu99 - c99 plus GCC extensions\r
+CSTANDARD = -std=gnu99\r
+\r
+# Place -D or -U options here\r
+CDEFS = -DF_CPU=16000000\r
+\r
+# Place -I options here\r
+CINCS =\r
+\r
+\r
+CDEBUG = -g$(DEBUG)\r
+CWARN = -Wall -Wstrict-prototypes \r
+CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wl,--relax\r
+#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)\r
+CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) $(CTUNING)\r
+\r
+\r
+#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs \r
+\r
+\r
+#Additional libraries.\r
+\r
+# Minimalistic printf version\r
+PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min\r
+\r
+# Floating point printf version (requires MATH_LIB = -lm below)\r
+PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt\r
+\r
+PRINTF_LIB = \r
+\r
+# Minimalistic scanf version\r
+SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min\r
+\r
+# Floating point + %[ scanf version (requires MATH_LIB = -lm below)\r
+SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt\r
+\r
+SCANF_LIB = \r
+\r
+MATH_LIB = -lm\r
+\r
+# External memory options\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# used for variables (.data/.bss) and heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# only used for heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+EXTMEMOPTS =\r
+\r
+#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref\r
+LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB_FLOAT) $(SCANF_LIB) $(MATH_LIB)\r
+\r
+\r
+# Programming support using avrdude. Settings and variables.\r
+\r
+AVRDUDE_PROGRAMMER = dragon_jtag\r
+AVRDUDE_PORT = usb\r
+\r
+AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex\r
+#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep\r
+\r
+\r
+# Uncomment the following if you want avrdude's erase cycle counter.\r
+# Note that this counter needs to be initialized first using -Yn,\r
+# see avrdude manual.\r
+#AVRDUDE_ERASE_COUNTER = -y\r
+\r
+# Uncomment the following if you do /not/ wish a verification to be\r
+# performed after programming the device.\r
+AVRDUDE_NO_VERIFY = -V\r
+\r
+# Increase verbosity level. Please use this when submitting bug\r
+# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude> \r
+# to submit bug reports.\r
+#AVRDUDE_VERBOSE = -v -v\r
+\r
+AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)\r
+AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)\r
+\r
+\r
+CC = avr-gcc\r
+OBJCOPY = avr-objcopy\r
+OBJDUMP = avr-objdump\r
+SIZE = avr-size\r
+NM = avr-nm\r
+AVRDUDE = avrdude\r
+REMOVE = rm -f\r
+MV = mv -f\r
+\r
+# Define all object files.\r
+OBJ = $(SRC:.c=.o) $(ASRC:.S=.o) \r
+\r
+# Define all listing files.\r
+LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)\r
+\r
+# Combine all necessary flags and optional flags.\r
+# Add target processor to flags.\r
+ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)\r
+ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)\r
+\r
+\r
+# Default target.\r
+all: build\r
+\r
+build: elf hex eep\r
+\r
+elf: $(TARGET).elf\r
+hex: $(TARGET).hex\r
+eep: $(TARGET).eep\r
+lss: $(TARGET).lss \r
+sym: $(TARGET).sym\r
+\r
+\r
+# Program the device. \r
+program: $(TARGET).hex $(TARGET).eep\r
+ $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)\r
+\r
+\r
+size: \r
+ $(SIZE) -C --mcu=$(MCU) $(TARGET).elf \r
+\r
+# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.\r
+COFFCONVERT=$(OBJCOPY) --debugging \\r
+--change-section-address .data-0x800000 \\r
+--change-section-address .bss-0x800000 \\r
+--change-section-address .noinit-0x800000 \\r
+--change-section-address .eeprom-0x810000 \r
+\r
+\r
+coff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+extcoff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+.SUFFIXES: .elf .hex .eep .lss .sym\r
+\r
+.elf.hex:\r
+ $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@\r
+\r
+.elf.eep:\r
+ -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \\r
+ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@\r
+\r
+# Create extended listing file from ELF output file.\r
+.elf.lss:\r
+ $(OBJDUMP) -h -S $< > $@\r
+\r
+# Create a symbol table from ELF output file.\r
+.elf.sym:\r
+ $(NM) -n $< > $@\r
+\r
+\r
+\r
+# Link: create ELF output file from object files.\r
+$(TARGET).elf: $(OBJ)\r
+ $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)\r
+\r
+\r
+# Compile: create object files from C source files.\r
+.c.o:\r
+ $(CC) -c $(ALL_CFLAGS) $< -o $@ \r
+\r
+\r
+# Compile: create assembler files from C source files.\r
+.c.s:\r
+ $(CC) -S $(ALL_CFLAGS) $< -o $@\r
+\r
+\r
+# Assemble: create object files from assembler source files.\r
+.S.o:\r
+ $(CC) -c $(ALL_ASFLAGS) $< -o $@\r
+\r
+\r
+\r
+# Target: clean project.\r
+clean:\r
+ $(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \\r
+ $(TARGET).map $(TARGET).sym $(TARGET).lss \\r
+ $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)\r
+\r
+depend:\r
+ if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \\r
+ then \\r
+ sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \\r
+ $(MAKEFILE).$$$$ && \\r
+ $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \\r
+ fi\r
+ echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \\r
+ >> $(MAKEFILE); \\r
+ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)\r
+\r
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend program_bootloader program_arduino program_leo\r
+\r
+program_bootloader: all\r
+ dfu-programmer $(MCU) erase && dfu-programmer $(MCU) flash $(TARGET).hex && dfu-programmer $(MCU) start\r
+\r
+# program_arduino: all\r
+# avrdude -patmega32u4 -cavr109 -P$(PORT) -b 57600 -D -Uflash:w:$(TARGET).hex:i\r
+\r
+program_leo: all\r
+ avrdude -patmega32u4 -cavr109 -P/dev/ttyACM0 -b57600 -D -Uflash:w:$(TARGET).hex:i\r
--- /dev/null
+# Hey Emacs, this is a -*- makefile -*-\r
+\r
+# AVR-GCC Makefile template, derived from the WinAVR template (which\r
+# is public domain), believed to be neutral to any flavor of "make"\r
+# (GNU make, BSD make, SysV make)\r
+\r
+\r
+MCU = atmega168pa\r
+FORMAT = ihex\r
+TARGET = main\r
+SRC = $(TARGET).c uart/uart.c twi/twi.c MagnetSensor.c\r
+ASRC = \r
+OPT = 2\r
+\r
+# Name of this Makefile (used for "make depend").\r
+MAKEFILE = Makefile\r
+\r
+# Debugging format.\r
+# Native formats for AVR-GCC's -g are stabs [default], or dwarf-2.\r
+# AVR (extended) COFF requires stabs, plus an avr-objcopy run.\r
+DEBUG = stabs\r
+\r
+# Compiler flag to set the C Standard level.\r
+# c89 - "ANSI" C\r
+# gnu89 - c89 plus GCC extensions\r
+# c99 - ISO C99 standard (not yet fully implemented)\r
+# gnu99 - c99 plus GCC extensions\r
+CSTANDARD = -std=gnu99\r
+\r
+# Place -D or -U options here\r
+CDEFS = -DF_CPU=16000000\r
+\r
+# Place -I options here\r
+CINCS =\r
+\r
+\r
+CDEBUG = -g$(DEBUG)\r
+CWARN = -Wall -Wstrict-prototypes \r
+CTUNING = -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wl,--relax\r
+#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)\r
+CFLAGS = $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CWARN) $(CSTANDARD) $(CEXTRA) $(CTUNING)\r
+\r
+\r
+#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs \r
+\r
+\r
+#Additional libraries.\r
+\r
+# Minimalistic printf version\r
+PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min\r
+\r
+# Floating point printf version (requires MATH_LIB = -lm below)\r
+PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt\r
+\r
+PRINTF_LIB = \r
+\r
+# Minimalistic scanf version\r
+SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min\r
+\r
+# Floating point + %[ scanf version (requires MATH_LIB = -lm below)\r
+SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt\r
+\r
+SCANF_LIB = \r
+\r
+MATH_LIB = -lm\r
+\r
+# External memory options\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# used for variables (.data/.bss) and heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+# 64 KB of external RAM, starting after internal RAM (ATmega128!),\r
+# only used for heap (malloc()).\r
+#EXTMEMOPTS = -Wl,--defsym=__heap_start=0x801100,--defsym=__heap_end=0x80ffff\r
+\r
+EXTMEMOPTS =\r
+\r
+#LDMAP = $(LDFLAGS) -Wl,-Map=$(TARGET).map,--cref\r
+LDFLAGS = $(EXTMEMOPTS) $(LDMAP) $(PRINTF_LIB_FLOAT) $(SCANF_LIB) $(MATH_LIB)\r
+\r
+\r
+# Programming support using avrdude. Settings and variables.\r
+\r
+AVRDUDE_PROGRAMMER = dragon_jtag\r
+AVRDUDE_PORT = usb\r
+\r
+AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex\r
+#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep\r
+\r
+\r
+# Uncomment the following if you want avrdude's erase cycle counter.\r
+# Note that this counter needs to be initialized first using -Yn,\r
+# see avrdude manual.\r
+#AVRDUDE_ERASE_COUNTER = -y\r
+\r
+# Uncomment the following if you do /not/ wish a verification to be\r
+# performed after programming the device.\r
+AVRDUDE_NO_VERIFY = -V\r
+\r
+# Increase verbosity level. Please use this when submitting bug\r
+# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude> \r
+# to submit bug reports.\r
+#AVRDUDE_VERBOSE = -v -v\r
+\r
+AVRDUDE_BASIC = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)\r
+AVRDUDE_FLAGS = $(AVRDUDE_BASIC) $(AVRDUDE_NO_VERIFY) $(AVRDUDE_VERBOSE) $(AVRDUDE_ERASE_COUNTER)\r
+\r
+\r
+CC = avr-gcc\r
+OBJCOPY = avr-objcopy\r
+OBJDUMP = avr-objdump\r
+SIZE = avr-size\r
+NM = avr-nm\r
+AVRDUDE = avrdude\r
+REMOVE = rm -f\r
+MV = mv -f\r
+\r
+# Define all object files.\r
+OBJ = $(SRC:.c=.o) $(ASRC:.S=.o) \r
+\r
+# Define all listing files.\r
+LST = $(ASRC:.S=.lst) $(SRC:.c=.lst)\r
+\r
+# Combine all necessary flags and optional flags.\r
+# Add target processor to flags.\r
+ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS)\r
+ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)\r
+\r
+\r
+# Default target.\r
+all: build\r
+\r
+build: elf hex eep\r
+\r
+elf: $(TARGET).elf\r
+hex: $(TARGET).hex\r
+eep: $(TARGET).eep\r
+lss: $(TARGET).lss \r
+sym: $(TARGET).sym\r
+\r
+\r
+# Program the device. \r
+program: $(TARGET).hex $(TARGET).eep\r
+ $(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)\r
+\r
+\r
+size: \r
+ $(SIZE) -C --mcu=$(MCU) $(TARGET).elf \r
+\r
+# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.\r
+COFFCONVERT=$(OBJCOPY) --debugging \\r
+--change-section-address .data-0x800000 \\r
+--change-section-address .bss-0x800000 \\r
+--change-section-address .noinit-0x800000 \\r
+--change-section-address .eeprom-0x810000 \r
+\r
+\r
+coff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+extcoff: $(TARGET).elf\r
+ $(COFFCONVERT) -O coff-ext-avr $(TARGET).elf $(TARGET).cof\r
+\r
+\r
+.SUFFIXES: .elf .hex .eep .lss .sym\r
+\r
+.elf.hex:\r
+ $(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@\r
+\r
+.elf.eep:\r
+ -$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \\r
+ --change-section-lma .eeprom=0 -O $(FORMAT) $< $@\r
+\r
+# Create extended listing file from ELF output file.\r
+.elf.lss:\r
+ $(OBJDUMP) -h -S $< > $@\r
+\r
+# Create a symbol table from ELF output file.\r
+.elf.sym:\r
+ $(NM) -n $< > $@\r
+\r
+\r
+\r
+# Link: create ELF output file from object files.\r
+$(TARGET).elf: $(OBJ)\r
+ $(CC) $(ALL_CFLAGS) $(OBJ) --output $@ $(LDFLAGS)\r
+\r
+\r
+# Compile: create object files from C source files.\r
+.c.o:\r
+ $(CC) -c $(ALL_CFLAGS) $< -o $@ \r
+\r
+\r
+# Compile: create assembler files from C source files.\r
+.c.s:\r
+ $(CC) -S $(ALL_CFLAGS) $< -o $@\r
+\r
+\r
+# Assemble: create object files from assembler source files.\r
+.S.o:\r
+ $(CC) -c $(ALL_ASFLAGS) $< -o $@\r
+\r
+\r
+\r
+# Target: clean project.\r
+clean:\r
+ $(REMOVE) $(TARGET).hex $(TARGET).eep $(TARGET).cof $(TARGET).elf \\r
+ $(TARGET).map $(TARGET).sym $(TARGET).lss \\r
+ $(OBJ) $(LST) $(SRC:.c=.s) $(SRC:.c=.d)\r
+\r
+depend:\r
+ if grep '^# DO NOT DELETE' $(MAKEFILE) >/dev/null; \\r
+ then \\r
+ sed -e '/^# DO NOT DELETE/,$$d' $(MAKEFILE) > \\r
+ $(MAKEFILE).$$$$ && \\r
+ $(MV) $(MAKEFILE).$$$$ $(MAKEFILE); \\r
+ fi\r
+ echo '# DO NOT DELETE THIS LINE -- make depend depends on it.' \\r
+ >> $(MAKEFILE); \\r
+ $(CC) -M -mmcu=$(MCU) $(CDEFS) $(CINCS) $(SRC) $(ASRC) >> $(MAKEFILE)\r
+\r
+.PHONY: all build elf hex eep lss sym program coff extcoff clean depend program_bootloader program_arduino program_leo\r
+\r
+program_bootloader: all\r
+ dfu-programmer $(MCU) erase && dfu-programmer $(MCU) flash $(TARGET).hex && dfu-programmer $(MCU) start\r
+\r
+# program_arduino: all\r
+# avrdude -patmega32u4 -cavr109 -P$(PORT) -b 57600 -D -Uflash:w:$(TARGET).hex:i\r
+\r
+program_leo: all\r
+ avrdude -patmega32u4 -cavr109 -P/dev/ttyACM0 -b57600 -D -Uflash:w:$(TARGET).hex:i\r
--- /dev/null
+/******************************************************************************\r
+SparkFunBME280.cpp\r
+BME280 Arduino and Teensy Driver\r
+Marshall Taylor @ SparkFun Electronics\r
+May 20, 2015\r
+https://github.com/sparkfun/BME280_Breakout\r
+\r
+Resources:\r
+Uses Wire.h for i2c operation\r
+Uses SPI.h for SPI operation\r
+\r
+Development environment specifics:\r
+Arduino IDE 1.6.4\r
+Teensy loader 1.23\r
+\r
+This code is released under the [MIT License](http://opensource.org/licenses/MIT).\r
+Please review the LICENSE.md file included with this example. If you have any questions \r
+or concerns with licensing, please contact techsupport@sparkfun.com.\r
+Distributed as-is; no warranty is given.\r
+******************************************************************************/\r
+//See SparkFunBME280.h for additional topology notes.\r
+\r
+#include "SparkFunBME280.h"\r
+#include "stdint.h"\r
+#include <math.h>\r
+#include "twi.h"\r
+\r
+//****************************************************************************//\r
+//\r
+// Settings and configuration\r
+//\r
+//****************************************************************************//\r
+\r
+//Constructor -- Specifies default configuration\r
+/*BME280::BME280( void )\r
+{\r
+ //Construct with these default settings if nothing is specified\r
+\r
+ //Select interface mode\r
+ settings.commInterface = I2C_MODE; //Can be I2C_MODE, SPI_MODE\r
+ //Select address for I2C. Does nothing for SPI\r
+ settings.I2CAddress = 0x77; //Ignored for SPI_MODE\r
+ //Select CS pin for SPI. Does nothing for I2C\r
+ settings.chipSelectPin = 10;\r
+ settings.runMode = 0;\r
+ settings.tempOverSample = 0;\r
+ settings.pressOverSample = 0;\r
+ settings.humidOverSample = 0;\r
+\r
+}\r
+*/\r
+\r
+//****************************************************************************//\r
+//\r
+// Configuration section\r
+//\r
+// This uses the stored SensorSettings to start the IMU\r
+// Use statements such as "mySensor.settings.commInterface = SPI_MODE;" to \r
+// configure before calling .begin();\r
+//\r
+//****************************************************************************//\r
+uint8_t InitBME(BME280* bme280){\r
+\r
+ uint8_t dataToWrite = 0; //Temporary variable\r
+ \r
+ //Reading all compensation data, range 0x88:A1, 0xE1:E7\r
+ \r
+ bme280->calibration.dig_T1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_LSB_REG)));\r
+ bme280->calibration.dig_T2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_LSB_REG)));\r
+ bme280->calibration.dig_T3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_LSB_REG)));\r
+\r
+ bme280->calibration.dig_P1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_LSB_REG)));\r
+ bme280->calibration.dig_P2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_LSB_REG)));\r
+ bme280->calibration.dig_P3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_LSB_REG)));\r
+ bme280->calibration.dig_P4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_LSB_REG)));\r
+ bme280->calibration.dig_P5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_LSB_REG)));\r
+ bme280->calibration.dig_P6 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_LSB_REG)));\r
+ bme280->calibration.dig_P7 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_LSB_REG)));\r
+ bme280->calibration.dig_P8 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_LSB_REG)));\r
+ bme280->calibration.dig_P9 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_LSB_REG)));\r
+\r
+ bme280->calibration.dig_H1 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H1_REG)));\r
+ bme280->calibration.dig_H2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_LSB_REG)));\r
+ bme280->calibration.dig_H3 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H3_REG)));\r
+ bme280->calibration.dig_H4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_MSB_REG) << 4) + (readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) & 0x0F)));\r
+ bme280->calibration.dig_H5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H5_MSB_REG) << 4) + ((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) >> 4) & 0x0F)));\r
+ bme280->calibration.dig_H6 = ((uint8_t)readRegister(bme280->settings.I2CAddress,BME280_DIG_H6_REG)); \r
+\r
+//Set the oversampling control words.\r
+ //config will only be writeable in sleep mode, so first insure that.\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, 0x00);\r
+\r
+ \r
+ //Set the config word\r
+ dataToWrite = (bme280->settings.tStandby << 0x5) & 0xE0;\r
+ dataToWrite |= (bme280->settings.filter << 0x02) & 0x1C;\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CONFIG_REG, dataToWrite);\r
+\r
+ \r
+ //Set ctrl_hum first, then ctrl_meas to activate ctrl_hum\r
+ dataToWrite = bme280->settings.humidOverSample & 0x07; //all other bits can be ignored\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_HUMIDITY_REG, dataToWrite);\r
+\r
+ \r
+ //set ctrl_meas\r
+ //First, set temp oversampling\r
+ dataToWrite = (bme280->settings.tempOverSample << 0x5) & 0xE0;\r
+ //Next, pressure oversampling\r
+\r
+ dataToWrite |= (bme280->settings.pressOverSample << 0x02) & 0x1C;\r
+ //Last, set mode\r
+ dataToWrite |= (bme280->settings.runMode) & 0x03;\r
+ //Load the byte\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, dataToWrite);\r
+\r
+ return readRegister(bme280->settings.I2CAddress,0xD0);\r
+}\r
+\r
+uint8_t InitBME280_( BME280* bme280)\r
+{\r
+ //Check the settings structure values to determine how to setup the device\r
+ uint8_t dataToWrite = 0; //Temporary variable\r
+ \r
+ //Reading all compensation data, range 0x88:A1, 0xE1:E7\r
+ \r
+ bme280->calibration.dig_T1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T1_LSB_REG)));\r
+ bme280->calibration.dig_T2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T2_LSB_REG)));\r
+ bme280->calibration.dig_T3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_T3_LSB_REG)));\r
+\r
+ bme280->calibration.dig_P1 = ((uint16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P1_LSB_REG)));\r
+ bme280->calibration.dig_P2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P2_LSB_REG)));\r
+ bme280->calibration.dig_P3 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P3_LSB_REG)));\r
+ bme280->calibration.dig_P4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P4_LSB_REG)));\r
+ bme280->calibration.dig_P5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P5_LSB_REG)));\r
+ bme280->calibration.dig_P6 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P6_LSB_REG)));\r
+ bme280->calibration.dig_P7 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P7_LSB_REG)));\r
+ bme280->calibration.dig_P8 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P8_LSB_REG)));\r
+ bme280->calibration.dig_P9 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_P9_LSB_REG)));\r
+\r
+ bme280->calibration.dig_H1 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H1_REG)));\r
+ bme280->calibration.dig_H2 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_MSB_REG) << 8) + readRegister(bme280->settings.I2CAddress,BME280_DIG_H2_LSB_REG)));\r
+ bme280->calibration.dig_H3 = ((uint8_t)(readRegister(bme280->settings.I2CAddress,BME280_DIG_H3_REG)));\r
+ bme280->calibration.dig_H4 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_MSB_REG) << 4) + (readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) & 0x0F)));\r
+ bme280->calibration.dig_H5 = ((int16_t)((readRegister(bme280->settings.I2CAddress,BME280_DIG_H5_MSB_REG) << 4) + ((readRegister(bme280->settings.I2CAddress,BME280_DIG_H4_LSB_REG) >> 4) & 0x0F)));\r
+ bme280->calibration.dig_H6 = ((uint8_t)readRegister(bme280->settings.I2CAddress,BME280_DIG_H6_REG));\r
+\r
+ //Set the oversampling control words.\r
+ //config will only be writeable in sleep mode, so first insure that.\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, 0x00);\r
+ \r
+ //Set the config word\r
+ dataToWrite = (bme280->settings.tStandby << 0x5) & 0xE0;\r
+ dataToWrite |= (bme280->settings.filter << 0x02) & 0x1C;\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CONFIG_REG, dataToWrite);\r
+ \r
+ //Set ctrl_hum first, then ctrl_meas to activate ctrl_hum\r
+ dataToWrite = bme280->settings.humidOverSample & 0x07; //all other bits can be ignored\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_HUMIDITY_REG, dataToWrite);\r
+ \r
+ //set ctrl_meas\r
+ //First, set temp oversampling\r
+ dataToWrite = (bme280->settings.tempOverSample << 0x5) & 0xE0;\r
+ //Next, pressure oversampling\r
+ dataToWrite |= (bme280->settings.pressOverSample << 0x02) & 0x1C;\r
+ //Last, set mode\r
+ dataToWrite |= (bme280->settings.runMode) & 0x03;\r
+ //Load the byte\r
+ writeRegister(bme280->settings.I2CAddress,BME280_CTRL_MEAS_REG, dataToWrite);\r
+ \r
+ return readRegister(bme280->settings.I2CAddress,0xD0);\r
+}\r
+\r
+//Strictly resets. Run .begin() afterwards\r
+void reset( BME280* bme280)\r
+{\r
+ writeRegister(bme280->settings.I2CAddress,BME280_RST_REG, 0xB6);\r
+ \r
+}\r
+\r
+//****************************************************************************//\r
+//\r
+// Pressure Section\r
+//\r
+//****************************************************************************//\r
+float readFloatPressure( BME280 *bme280)\r
+{\r
+\r
+ // Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 integer bits and 8 fractional bits).\r
+ // Output value of “24674867” represents 24674867/256 = 96386.2 Pa = 963.862 hPa\r
+ int32_t adc_P = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_MSB_REG) << 12) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_LSB_REG) << 4) | ((readRegister(bme280->settings.I2CAddress,BME280_PRESSURE_XLSB_REG) >> 4) & 0x0F);\r
+ \r
+ int64_t var1, var2, p_acc;\r
+ var1 = ((int64_t)bme280->t_fine) - 128000;\r
+ var2 = var1 * var1 * (int64_t)bme280->calibration.dig_P6;\r
+ var2 = var2 + ((var1 * (int64_t)bme280->calibration.dig_P5)<<17);\r
+ var2 = var2 + (((int64_t)bme280->calibration.dig_P4)<<35);\r
+ var1 = ((var1 * var1 * (int64_t)bme280->calibration.dig_P3)>>8) + ((var1 * (int64_t)bme280->calibration.dig_P2)<<12);\r
+ var1 = (((((int64_t)1)<<47)+var1))*((int64_t)bme280->calibration.dig_P1)>>33;\r
+ if (var1 == 0)\r
+ {\r
+ return 0; // avoid exception caused by division by zero\r
+ }\r
+ p_acc = 1048576 - adc_P;\r
+ p_acc = (((p_acc<<31) - var2)*3125)/var1;\r
+ var1 = (((int64_t)bme280->calibration.dig_P9) * (p_acc>>13) * (p_acc>>13)) >> 25;\r
+ var2 = (((int64_t)bme280->calibration.dig_P8) * p_acc) >> 19;\r
+ p_acc = ((p_acc + var1 + var2) >> 8) + (((int64_t)bme280->calibration.dig_P7)<<4);\r
+ \r
+ return (float)p_acc / 256.0;\r
+ \r
+}\r
+/*\r
+float readFloatAltitudeMeters( BME280* bme280 )\r
+{\r
+ float heightOutput = 0;\r
+ \r
+ heightOutput = ((float)-45846.2)*(pow(((float)readFloatPressure(&bme280)/(float)101325), 0.190263) - (float)1);\r
+ return heightOutput;\r
+ \r
+}\r
+\r
+float readFloatAltitudeFeet( BME280* bme280 )\r
+{\r
+ float heightOutput = 0;\r
+ \r
+ heightOutput = readFloatAltitudeMeters( &bme280) * 3.28084;\r
+ return heightOutput;\r
+ \r
+}\r
+*/\r
+//****************************************************************************//\r
+//\r
+// Humidity Section\r
+//\r
+//****************************************************************************//\r
+float readFloatHumidity( BME280* bme280 )\r
+{\r
+ \r
+ // Returns humidity in %RH as unsigned 32 bit integer in Q22. 10 format (22 integer and 10 fractional bits).\r
+ // Output value of “47445” represents 47445/1024 = 46. 333 %RH\r
+ int32_t adc_H = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_HUMIDITY_MSB_REG) << 8) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_HUMIDITY_LSB_REG));\r
+ \r
+ int32_t var1;\r
+ var1 = (bme280->t_fine - ((int32_t)76800));\r
+ var1 = (((((adc_H << 14) - (((int32_t)bme280->calibration.dig_H4) << 20) - (((int32_t)bme280->calibration.dig_H5) * var1)) +\r
+ ((int32_t)16384)) >> 15) * (((((((var1 * ((int32_t)bme280->calibration.dig_H6)) >> 10) * (((var1 * ((int32_t)bme280->calibration.dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) *\r
+ ((int32_t)bme280->calibration.dig_H2) + 8192) >> 14));\r
+ var1 = (var1 - (((((var1 >> 15) * (var1 >> 15)) >> 7) * ((int32_t)bme280->calibration.dig_H1)) >> 4));\r
+ var1 = (var1 < 0 ? 0 : var1);\r
+ var1 = (var1 > 419430400 ? 419430400 : var1);\r
+\r
+ return (float)(var1>>12) / 1024.0;\r
+\r
+}\r
+\r
+\r
+\r
+//****************************************************************************//\r
+//\r
+// Temperature Section\r
+//\r
+//****************************************************************************//\r
+\r
+float readTempC( BME280* bme280 )\r
+{\r
+ // Returns temperature in DegC, resolution is 0.01 DegC. Output value of “5123” equals 51.23 DegC.\r
+ // t_fine carries fine temperature as global value\r
+\r
+ //get the reading (adc_T);\r
+ int32_t adc_T = ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_MSB_REG) << 12) | ((uint32_t)readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_LSB_REG) << 4) | ((readRegister(bme280->settings.I2CAddress,BME280_TEMPERATURE_XLSB_REG) >> 4) & 0x0F);\r
+\r
+ //By datasheet, calibrate\r
+ int64_t var1, var2;\r
+\r
+ var1 = ((((adc_T>>3) - ((int32_t)bme280->calibration.dig_T1<<1))) * ((int32_t)bme280->calibration.dig_T2)) >> 11;\r
+ var2 = (((((adc_T>>4) - ((int32_t)bme280->calibration.dig_T1)) * ((adc_T>>4) - ((int32_t)bme280->calibration.dig_T1))) >> 12) *\r
+ ((int32_t)bme280->calibration.dig_T3)) >> 14;\r
+ bme280->t_fine = var1 + var2;\r
+ float output = (bme280->t_fine * 5 + 128) >> 8;\r
+\r
+ output = output / 100;\r
+ \r
+ return output;\r
+}\r
+\r
+/*float readTempF( BME280* bme280 )\r
+{\r
+ float output = readTempC(&bme280);\r
+ output = (output * 9) / 5 + 32;\r
+\r
+ return output;\r
+}*/\r
+\r
+//****************************************************************************//\r
+//\r
+// Utility\r
+//\r
+//****************************************************************************//\r
+void readRegisterRegion(uint8_t Addr, uint8_t *outputPointer , uint8_t offset, uint8_t length)\r
+{\r
+ //define pointer that will point to the external space\r
+ ///uint8_t i = 0;\r
+ uint8_t c = 0;\r
+ twi_writeTo(Addr,&offset,1,1,true);\r
+\r
+ for(int i = 0 ; i<length;i++){\r
+ // request bytes from slave device\r
+ if (i < length-1){\r
+ twi_readFrom(Addr, &c, 1, false);\r
+ }else {\r
+ twi_readFrom(Addr, &c, 1, true);\r
+ }\r
+ *outputPointer = c;\r
+ outputPointer++;\r
+ }\r
+\r
+}\r
+\r
+uint8_t readRegister(uint8_t Addr, uint8_t offset)\r
+{\r
+ //Return value\r
+ uint8_t result;\r
+\r
+ twi_writeTo(Addr, &offset,1,1,true);\r
+ twi_readFrom(Addr, &result, 1, true);\r
+\r
+ \r
+ return result;\r
+}\r
+\r
+int16_t readRegisterInt16(uint8_t Addr, uint8_t offset )\r
+{\r
+ uint8_t myBuffer[2];\r
+ readRegisterRegion(Addr, myBuffer, offset, 2); //Does memory transfer\r
+ int16_t output = (int16_t)myBuffer[0] | (int16_t)(myBuffer[1] << 8);\r
+ \r
+ return output;\r
+}\r
+\r
+void writeRegister(uint8_t Addr,uint8_t offset, uint8_t dataToWrite)\r
+{\r
+ //Write the byte\r
+ uint8_t value[2];\r
+ value[0]=offset;\r
+ value[1]=dataToWrite;\r
+ twi_writeTo(Addr,value,2,1,true);\r
+}\r
--- /dev/null
+/******************************************************************************\r
+SparkFunBME280.h\r
+BME280 Arduino and Teensy Driver\r
+Marshall Taylor @ SparkFun Electronics\r
+May 20, 2015\r
+https://github.com/sparkfun/BME280_Breakout\r
+\r
+Resources:\r
+Uses Wire.h for i2c operation\r
+Uses SPI.h for SPI operation\r
+\r
+Development environment specifics:\r
+Arduino IDE 1.6.4\r
+Teensy loader 1.23\r
+\r
+This code is released under the [MIT License](http://opensource.org/licenses/MIT).\r
+Please review the LICENSE.md file included with this example. If you have any questions \r
+or concerns with licensing, please contact techsupport@sparkfun.com.\r
+Distributed as-is; no warranty is given.\r
+******************************************************************************/\r
+\r
+// Test derived class for base class SparkFunIMU\r
+#ifndef __BME280_H__\r
+#define __BME280_H__\r
+\r
+#include "stdint.h"\r
+#include "main.h"\r
+\r
+#define I2C_MODE 0\r
+#define SPI_MODE 1\r
+\r
+//Register names:\r
+#define BME280_DIG_T1_LSB_REG 0x88\r
+#define BME280_DIG_T1_MSB_REG 0x89\r
+#define BME280_DIG_T2_LSB_REG 0x8A\r
+#define BME280_DIG_T2_MSB_REG 0x8B\r
+#define BME280_DIG_T3_LSB_REG 0x8C\r
+#define BME280_DIG_T3_MSB_REG 0x8D\r
+#define BME280_DIG_P1_LSB_REG 0x8E\r
+#define BME280_DIG_P1_MSB_REG 0x8F\r
+#define BME280_DIG_P2_LSB_REG 0x90\r
+#define BME280_DIG_P2_MSB_REG 0x91\r
+#define BME280_DIG_P3_LSB_REG 0x92\r
+#define BME280_DIG_P3_MSB_REG 0x93\r
+#define BME280_DIG_P4_LSB_REG 0x94\r
+#define BME280_DIG_P4_MSB_REG 0x95\r
+#define BME280_DIG_P5_LSB_REG 0x96\r
+#define BME280_DIG_P5_MSB_REG 0x97\r
+#define BME280_DIG_P6_LSB_REG 0x98\r
+#define BME280_DIG_P6_MSB_REG 0x99\r
+#define BME280_DIG_P7_LSB_REG 0x9A\r
+#define BME280_DIG_P7_MSB_REG 0x9B\r
+#define BME280_DIG_P8_LSB_REG 0x9C\r
+#define BME280_DIG_P8_MSB_REG 0x9D\r
+#define BME280_DIG_P9_LSB_REG 0x9E\r
+#define BME280_DIG_P9_MSB_REG 0x9F\r
+#define BME280_DIG_H1_REG 0xA1\r
+#define BME280_CHIP_ID_REG 0xD0 //Chip ID\r
+#define BME280_RST_REG 0xE0 //Softreset Reg\r
+#define BME280_DIG_H2_LSB_REG 0xE1\r
+#define BME280_DIG_H2_MSB_REG 0xE2\r
+#define BME280_DIG_H3_REG 0xE3\r
+#define BME280_DIG_H4_MSB_REG 0xE4\r
+#define BME280_DIG_H4_LSB_REG 0xE5\r
+#define BME280_DIG_H5_MSB_REG 0xE6\r
+#define BME280_DIG_H6_REG 0xE7\r
+#define BME280_CTRL_HUMIDITY_REG 0xF2 //Ctrl Humidity Reg\r
+#define BME280_STAT_REG 0xF3 //Status Reg\r
+#define BME280_CTRL_MEAS_REG 0xF4 //Ctrl Measure Reg\r
+#define BME280_CONFIG_REG 0xF5 //Configuration Reg\r
+#define BME280_PRESSURE_MSB_REG 0xF7 //Pressure MSB\r
+#define BME280_PRESSURE_LSB_REG 0xF8 //Pressure LSB\r
+#define BME280_PRESSURE_XLSB_REG 0xF9 //Pressure XLSB\r
+#define BME280_TEMPERATURE_MSB_REG 0xFA //Temperature MSB\r
+#define BME280_TEMPERATURE_LSB_REG 0xFB //Temperature LSB\r
+#define BME280_TEMPERATURE_XLSB_REG 0xFC //Temperature XLSB\r
+#define BME280_HUMIDITY_MSB_REG 0xFD //Humidity MSB\r
+#define BME280_HUMIDITY_LSB_REG 0xFE //Humidity LSB\r
+\r
+\r
+//Class SensorSettings. This object is used to hold settings data. The application\r
+//uses this classes' data directly. The settings are adopted and sent to the sensor\r
+//at special times, such as .begin. Some are used for doing math.\r
+//\r
+//This is a kind of bloated way to do this. The trade-off is that the user doesn't\r
+//need to deal with #defines or enums with bizarre names.\r
+//\r
+//A power user would strip out SensorSettings entirely, and send specific read and\r
+//write command directly to the IC. (ST #defines below)\r
+//\r
+typedef struct\r
+{\r
+ //Main Interface and mode settings\r
+ uint8_t commInterface;\r
+ uint8_t I2CAddress;\r
+ uint8_t chipSelectPin;\r
+ \r
+ uint8_t runMode;\r
+ uint8_t tStandby;\r
+ uint8_t filter;\r
+ uint8_t tempOverSample;\r
+ uint8_t pressOverSample;\r
+ uint8_t humidOverSample;\r
+\r
+} SensorSettings;\r
+\r
+//Used to hold the calibration constants. These are used\r
+//by the driver as measurements are being taking\r
+typedef struct\r
+{\r
+ uint16_t dig_T1;\r
+ int16_t dig_T2;\r
+ int16_t dig_T3;\r
+ \r
+ uint16_t dig_P1;\r
+ int16_t dig_P2;\r
+ int16_t dig_P3;\r
+ int16_t dig_P4;\r
+ int16_t dig_P5;\r
+ int16_t dig_P6;\r
+ int16_t dig_P7;\r
+ int16_t dig_P8;\r
+ int16_t dig_P9;\r
+ \r
+ uint8_t dig_H1;\r
+ int16_t dig_H2;\r
+ uint8_t dig_H3;\r
+ int16_t dig_H4;\r
+ int16_t dig_H5;\r
+ uint8_t dig_H6;\r
+ \r
+} SensorCalibration;\r
+\r
+//This is the man operational class of the driver.\r
+\r
+typedef struct {\r
+ //settings\r
+ SensorSettings settings /*= {.commInterface=0, .I2CAddress = 0xFF, .chipSelectPin=10, .runMode=0, .tempOverSample=0, .pressOverSample=0, .humidOverSample=0}*/;\r
+ SensorCalibration calibration;\r
+ int32_t t_fine;\r
+} BME280;\r
+\r
+ \r
+ \r
+uint8_t InitBME(BME280* bme280);\r
+ //Software reset routine\r
+ void reset( BME280* bme280);\r
+ \r
+ uint8_t initBME280_( BME280* bme280 );\r
+\r
+ //Returns the values as floats.\r
+ float readFloatPressure( BME280* bme280 );\r
+ //float readFloatAltitudeMeters( BME280* bme280 );\r
+ //float readFloatAltitudeFeet( BME280* bme280 );\r
+ \r
+ float readFloatHumidity( BME280* bme280 );\r
+\r
+ //Temperature related methods\r
+ float readTempC( BME280* bme280 );\r
+ //float readTempF( BME280* bme280 );\r
+\r
+ //The following utilities read and write\r
+\r
+ //ReadRegisterRegion takes a uint8 array address as input and reads\r
+ //a chunk of memory into that array.\r
+ void readRegisterRegion(uint8_t Addr, uint8_t*, uint8_t, uint8_t );\r
+ //readRegister reads one register\r
+ uint8_t readRegister(uint8_t, uint8_t);\r
+ //Reads two regs, LSByte then MSByte order, and concatenates them\r
+ //Used for two-byte reads\r
+ int16_t readRegisterInt16(uint8_t Addr, uint8_t offset );\r
+ //Writes a byte;\r
+ void writeRegister(uint8_t, uint8_t, uint8_t);\r
+ \r
+#endif // End of __BME280_H__ definition check\r
--- /dev/null
+/*#include <avr/pgmspace.h>
+#include <util/delay.h>
+#include <stdlib.h>
+*/
+#include "TSL2591.h"
+
+void Init_TSL2591(TSL2591* tsl)
+{
+ tsl->_initialized = true;
+ tsl->_integration = TSL2591_INTEGRATIONTIME_100MS;
+ tsl->_gain = TSL2591_GAIN_MED;
+ TSL2591_setTiming(tsl, tsl->_integration);
+ TSL2591_setGain(tsl, tsl->_gain);
+ TSL2591_disable();
+}
+
+
+void TSL2591_enable()
+{
+ // Enable the device by setting the control bit to 0x01
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_ENABLE, TSL2591_ENABLE_POWERON | TSL2591_ENABLE_AEN | TSL2591_ENABLE_AIEN | TSL2591_ENABLE_NPIEN);
+}
+
+void TSL2591_disable()
+{
+ // Disable the device by setting the control bit to 0x00
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_ENABLE, TSL2591_ENABLE_POWEROFF);
+}
+
+void TSL2591_setGain(TSL2591* tsl, tsl2591Gain_t gain)
+{
+ TSL2591_enable();
+ tsl->_gain = gain;
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CONTROL, tsl->_integration | tsl->_gain);
+ TSL2591_disable();
+}
+
+tsl2591Gain_t TSL2591_getGain(TSL2591* tsl)
+{
+ return tsl->_gain;
+}
+
+void TSL2591_setTiming(TSL2591* tsl, tsl2591IntegrationTime_t integration)
+{
+ TSL2591_enable();
+ tsl->_integration = integration;
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CONTROL, tsl->_integration | tsl->_gain);
+ TSL2591_disable();
+}
+
+tsl2591IntegrationTime_t TSL2591_getTiming(TSL2591* tsl)
+{
+ return tsl->_integration;
+}
+
+uint32_t TSL2591_calculateLux(TSL2591* tsl, uint16_t ch0, uint16_t ch1)
+{
+ float atime, again;
+ float cpl, lux1, lux2, lux;
+ uint32_t chan0, chan1;
+
+ // Check for overflow conditions first
+ if ((ch0 == 0xFFFF) | (ch1 == 0xFFFF))
+ {
+ // Signal an overflow
+ return 0;
+ }
+
+ // Note: This algorithm is based on preliminary coefficients
+ // provided by AMS and may need to be updated in the future
+
+ switch (tsl->_integration)
+ {
+ case TSL2591_INTEGRATIONTIME_100MS :
+ atime = 100.0F;
+ break;
+ case TSL2591_INTEGRATIONTIME_200MS :
+ atime = 200.0F;
+ break;
+ case TSL2591_INTEGRATIONTIME_300MS :
+ atime = 300.0F;
+ break;
+ case TSL2591_INTEGRATIONTIME_400MS :
+ atime = 400.0F;
+ break;
+ case TSL2591_INTEGRATIONTIME_500MS :
+ atime = 500.0F;
+ break;
+ case TSL2591_INTEGRATIONTIME_600MS :
+ atime = 600.0F;
+ break;
+ default: // 100ms
+ atime = 100.0F;
+ break;
+ }
+
+ switch (tsl->_gain)
+ {
+ case TSL2591_GAIN_LOW :
+ again = 1.0F;
+ break;
+ case TSL2591_GAIN_MED :
+ again = 25.0F;
+ break;
+ case TSL2591_GAIN_HIGH :
+ again = 428.0F;
+ break;
+ case TSL2591_GAIN_MAX :
+ again = 9876.0F;
+ break;
+ default:
+ again = 1.0F;
+ break;
+ }
+
+ // cpl = (ATIME * AGAIN) / DF
+ cpl = (atime * again) / TSL2591_LUX_DF;
+
+ lux1 = ( (float)ch0 - (TSL2591_LUX_COEFB * (float)ch1) ) / cpl;
+ lux2 = ( ( TSL2591_LUX_COEFC * (float)ch0 ) - ( TSL2591_LUX_COEFD * (float)ch1 ) ) / cpl;
+ lux = lux1 > lux2 ? lux1 : lux2;
+
+ // Alternate lux calculation
+ //lux = ( (float)ch0 - ( 1.7F * (float)ch1 ) ) / cpl;
+
+ // Signal I2C had no errors
+ return (uint32_t)lux;
+}
+
+uint32_t TSL2591_getFullLuminosity (TSL2591* tsl)
+{
+ // Enable the device
+ TSL2591_enable();
+
+ // Wait x ms for ADC to complete
+ for (uint8_t d=0; d<=tsl->_integration; d++)
+ {
+ _delay_ms(120);
+ }
+
+ uint32_t x;
+ x = TSL2591_read16(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN1_LOW);
+ x <<= 16;
+ x |= TSL2591_read16(TSL2591_COMMAND_BIT | TSL2591_REGISTER_CHAN0_LOW);
+
+ TSL2591_disable();
+
+ return x;
+}
+
+uint16_t TSL2591_getLuminosity (TSL2591* tsl, uint8_t channel)
+{
+ uint32_t x = TSL2591_getFullLuminosity(tsl);
+
+ if (channel == TSL2591_FULLSPECTRUM)
+ {
+ // Reads two byte value from channel 0 (visible + infrared)
+ return (x & 0xFFFF);
+ }
+ else if (channel == TSL2591_INFRARED)
+ {
+ // Reads two byte value from channel 1 (infrared)
+ return (x >> 16);
+ }
+ else if (channel == TSL2591_VISIBLE)
+ {
+ // Reads all and subtracts out just the visible!
+ return ( (x & 0xFFFF) - (x >> 16));
+ }
+
+ // unknown channel!
+ return 0;
+}
+
+/*void TSL2591_registerInterrupt(TSL2591* tsl, uint16_t lowerThreshold, uint16_t upperThreshold)
+{
+ if (!tsl->_initialized)
+ {
+ if (!TSL2591_begin(tsl))
+ {
+ return;
+ }
+ }
+
+ TSL2591_enable(tsl);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_NPAILTL, lowerThreshold);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_NPAILTH, lowerThreshold >> 8);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_NPAIHTL, upperThreshold);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_NPAIHTH, upperThreshold >> 8);
+ TSL2591_disable(tsl);
+}
+
+void TSL2591_registerInterrupt(TSL2591* tsl, uint16_t lowerThreshold, uint16_t upperThreshold, tsl2591Persist_t persist)
+{
+ if (!_initialized)
+ {
+ if (!TSL2591_begin(tsl))
+ {
+ return;
+ }
+ }
+
+ TSL2591_enable(tsl);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_PERSIST_FILTER, persist);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_AILTL, lowerThreshold);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_AILTH, lowerThreshold >> 8);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_AIHTL, upperThreshold);
+ TSL2591_write8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_THRESHOLD_AIHTH, upperThreshold >> 8);
+ TSL2591_disable(tsl);
+}
+
+void TSL2591_clearInterrupt(TSL2591* tsl)
+{
+ if (!tsl->_initialized)
+ {
+ if (!TSL2591_begin(tsl))
+ {
+ return;
+ }
+ }
+
+ TSL2591_enable(tsl);
+ TSL2591_write8(TSL2591_CLEAR_INT);
+ TSL2591_disable(tsl);
+}
+
+
+uint8_t Adafruit_TSL2591_getStatus(TSL2591* tsl)
+{
+ if (!tsl->_initialized)
+ {
+ if (!TSL2591_begin(tsl))
+ {
+ return 0;
+ }
+ }
+
+ // Enable the device
+ TSL2591_enable(tsl);
+ uint8_t x;
+ x = TSL2591_read8(TSL2591_COMMAND_BIT | TSL2591_REGISTER_DEVICE_STATUS);
+ TSL2591_disable(tsl);
+ return x;
+}
+*/
+
+uint8_t TSL2591_read8(uint8_t reg)
+{
+ uint8_t x;
+ twi_writeTo(TSL2591_ADDR, ®, 1,1, true);
+ twi_readFrom(TSL2591_ADDR, &x, 1, true);
+
+ return x;
+}
+
+uint16_t TSL2591_read16(uint8_t reg)
+{
+ uint16_t x[2];
+
+ twi_writeTo(TSL2591_ADDR, ®, 1,1, true);
+ twi_readFrom(TSL2591_ADDR, x, 2, true);
+
+ x[1] <<= 8;
+ x[1] |= x[0];
+ return x;
+}
+
+void TSL2591_write8 (uint8_t reg, uint8_t value)
+{
+ uint8_t write_val[2] = {reg, value};
+ twi_writeTo(TSL2591_ADDR, reg, 2,1, true);
+}
+
+
--- /dev/null
+#include "main.h"
+
+#ifndef _TSL2591_H_
+#define _TSL2591_H_
+
+#define TSL2591_VISIBLE (2) // channel 0 - channel 1
+#define TSL2591_INFRARED (1) // channel 1
+#define TSL2591_FULLSPECTRUM (0) // channel 0
+
+#define TSL2591_ADDR (0x29)
+#define TSL2591_READBIT (0x01)
+
+#define TSL2591_COMMAND_BIT (0xA0) // 1010 0000: bits 7 and 5 for 'command normal'
+#define TSL2591_CLEAR_INT (0xE7)
+#define TSL2591_TEST_INT (0xE4)
+#define TSL2591_WORD_BIT (0x20) // 1 = read/write word (rather than byte)
+#define TSL2591_BLOCK_BIT (0x10) // 1 = using block read/write
+
+#define TSL2591_ENABLE_POWEROFF (0x00)
+#define TSL2591_ENABLE_POWERON (0x01)
+#define TSL2591_ENABLE_AEN (0x02) // ALS Enable. This field activates ALS function. Writing a one activates the ALS. Writing a zero disables the ALS.
+#define TSL2591_ENABLE_AIEN (0x10) // ALS Interrupt Enable. When asserted permits ALS interrupts to be generated, subject to the persist filter.
+#define TSL2591_ENABLE_NPIEN (0x80) // No Persist Interrupt Enable. When asserted NP Threshold conditions will generate an interrupt, bypassing the persist filter
+
+#define TSL2591_LUX_DF (408.0F)
+#define TSL2591_LUX_COEFB (1.64F) // CH0 coefficient
+#define TSL2591_LUX_COEFC (0.59F) // CH1 coefficient A
+#define TSL2591_LUX_COEFD (0.86F) // CH2 coefficient B
+
+enum
+{
+ TSL2591_REGISTER_ENABLE = 0x00,
+ TSL2591_REGISTER_CONTROL = 0x01,
+ TSL2591_REGISTER_THRESHOLD_AILTL = 0x04, // ALS low threshold lower byte
+ TSL2591_REGISTER_THRESHOLD_AILTH = 0x05, // ALS low threshold upper byte
+ TSL2591_REGISTER_THRESHOLD_AIHTL = 0x06, // ALS high threshold lower byte
+ TSL2591_REGISTER_THRESHOLD_AIHTH = 0x07, // ALS high threshold upper byte
+ TSL2591_REGISTER_THRESHOLD_NPAILTL = 0x08, // No Persist ALS low threshold lower byte
+ TSL2591_REGISTER_THRESHOLD_NPAILTH = 0x09, // etc
+ TSL2591_REGISTER_THRESHOLD_NPAIHTL = 0x0A,
+ TSL2591_REGISTER_THRESHOLD_NPAIHTH = 0x0B,
+ TSL2591_REGISTER_PERSIST_FILTER = 0x0C,
+ TSL2591_REGISTER_PACKAGE_PID = 0x11,
+ TSL2591_REGISTER_DEVICE_ID = 0x12,
+ TSL2591_REGISTER_DEVICE_STATUS = 0x13,
+ TSL2591_REGISTER_CHAN0_LOW = 0x14,
+ TSL2591_REGISTER_CHAN0_HIGH = 0x15,
+ TSL2591_REGISTER_CHAN1_LOW = 0x16,
+ TSL2591_REGISTER_CHAN1_HIGH = 0x17
+};
+
+typedef enum
+{
+ TSL2591_INTEGRATIONTIME_100MS = 0x00,
+ TSL2591_INTEGRATIONTIME_200MS = 0x01,
+ TSL2591_INTEGRATIONTIME_300MS = 0x02,
+ TSL2591_INTEGRATIONTIME_400MS = 0x03,
+ TSL2591_INTEGRATIONTIME_500MS = 0x04,
+ TSL2591_INTEGRATIONTIME_600MS = 0x05,
+}
+tsl2591IntegrationTime_t;
+
+typedef enum
+{
+ // bit 7:4: 0
+ TSL2591_PERSIST_EVERY = 0x00, // Every ALS cycle generates an interrupt
+ TSL2591_PERSIST_ANY = 0x01, // Any value outside of threshold range
+ TSL2591_PERSIST_2 = 0x02, // 2 consecutive values out of range
+ TSL2591_PERSIST_3 = 0x03, // 3 consecutive values out of range
+ TSL2591_PERSIST_5 = 0x04, // 5 consecutive values out of range
+ TSL2591_PERSIST_10 = 0x05, // 10 consecutive values out of range
+ TSL2591_PERSIST_15 = 0x06, // 15 consecutive values out of range
+ TSL2591_PERSIST_20 = 0x07, // 20 consecutive values out of range
+ TSL2591_PERSIST_25 = 0x08, // 25 consecutive values out of range
+ TSL2591_PERSIST_30 = 0x09, // 30 consecutive values out of range
+ TSL2591_PERSIST_35 = 0x0A, // 35 consecutive values out of range
+ TSL2591_PERSIST_40 = 0x0B, // 40 consecutive values out of range
+ TSL2591_PERSIST_45 = 0x0C, // 45 consecutive values out of range
+ TSL2591_PERSIST_50 = 0x0D, // 50 consecutive values out of range
+ TSL2591_PERSIST_55 = 0x0E, // 55 consecutive values out of range
+ TSL2591_PERSIST_60 = 0x0F, // 60 consecutive values out of range
+}
+tsl2591Persist_t;
+
+typedef enum
+{
+ TSL2591_GAIN_LOW = 0x00, // low gain (1x)
+ TSL2591_GAIN_MED = 0x10, // medium gain (25x)
+ TSL2591_GAIN_HIGH = 0x20, // medium gain (428x)
+ TSL2591_GAIN_MAX = 0x30, // max gain (9876x)
+}
+tsl2591Gain_t;
+
+typedef struct {
+ tsl2591Gain_t _gain;
+ tsl2591IntegrationTime_t _integration;
+ bool _initialized;
+} TSL2591;
+
+
+ void Init_TSL2591 ( TSL2591* tsl );
+
+ void TSL2591_enable ( void );
+ void TSL2591_disable ( void );
+ void TSL2591_write8 ( uint8_t r, uint8_t v );
+ uint16_t TSL2591_read16 ( uint8_t reg );
+ uint8_t TSL2591_read8 ( uint8_t reg );
+
+ uint32_t TSL2591_calculateLux (TSL2591* tsl, uint16_t ch0, uint16_t ch1 );
+ void TSL2591_setGain (TSL2591* tsl, tsl2591Gain_t gain );
+ void TSL2591_setTiming (TSL2591* tsl, tsl2591IntegrationTime_t integration );
+ uint16_t TSL2591_getLuminosity (TSL2591* tsl, uint8_t channel );
+ uint32_t TSL2591_getFullLuminosity (TSL2591* tsl );
+
+ tsl2591IntegrationTime_t TSL2591_getTiming(TSL2591* tsl);
+ tsl2591Gain_t TSL2591_getGain(TSL2591* tsl);
+
+
+#endif
+
--- /dev/null
+/*\r
+ * main.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+#include "main.h"\r
+\r
+\r
+int main(void)\r
+{ char s[30];\r
+ uint8_t Status[4]={0,0,0,0};\r
+ uint8_t Status_Mag[4]={0,0,0,0};\r
+ uint16_t TRef[4]={0,0,0,0};\r
+ float SensX[4];\r
+ float SensY[4];\r
+ float SensZ[4];\r
+ \r
+ //For CLK setting\r
+ CLKPR = (0<<CLKPCE); // No prescale\r
+ CLKPR = 0x00; //prescaler 2\r
+ PRR = 0;\r
+ //Init UART\r
+ uinit();\r
+\r
+ //Init I2C/TWI\r
+ twi_init();\r
+\r
+ //Init Magnetic field Sensor\r
+ Status[0] = InitMagSensor(ADDR_MAG_0, &TRef[0], &SensX[0], &SensY[0], &SensZ[0]);\r
+ Status[1] = InitMagSensor(ADDR_MAG_1, &TRef[1], &SensX[1], &SensY[1], &SensZ[1]);\r
+ Status[2] = InitMagSensor(ADDR_MAG_2, &TRef[2], &SensX[2], &SensY[2], &SensZ[2]);\r
+ Status[3] = InitMagSensor(ADDR_MAG_3, &TRef[3], &SensX[3], &SensY[3], &SensZ[3]);\r
+\r
+ // sprintf(s,"%u", Status[0]);\r
+ //uputs(s);\r
+ _delay_ms(300);\r
+\r
+ while (1)\r
+ { \r
+ if (Status[0] == 0) { MeasureMagSens(ADDR_MAG_0, TRef[0], &SensX[0], &SensY[0], &SensZ[0]);}\r
+ else { uputsnl("ERR Mag 0 NO_DEVICE"); }\r
+ if (Status[1] == 0) { MeasureMagSens(ADDR_MAG_1, TRef[1], &SensX[1], &SensY[1], &SensZ[1]);}\r
+ else { uputsnl("ERR Mag 1 NO_DEVICE"); }\r
+ if (Status[2] == 0) { MeasureMagSens(ADDR_MAG_2, TRef[2], &SensX[2], &SensY[2], &SensZ[2]);}\r
+ else { uputsnl("ERR Mag 2 NO_DEVICE"); }\r
+ if (Status[3] == 0) { MeasureMagSens(ADDR_MAG_3, TRef[3], &SensX[3], &SensY[3], &SensZ[3]);}\r
+ else { uputsnl("ERR Mag 3 NO_DEVICE"); }\r
+\r
+ _delay_ms(500);\r
+\r
+ }\r
+ cli();\r
+ return 0;\r
+}\r
+\r
--- /dev/null
+/*\r
+ * main.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+#include "main.h"\r
+\r
+\r
+int main(void)\r
+{ char s[30];\r
+ uint8_t Status[4]={0,0,0,0};\r
+ uint8_t Status_Mag[4]={0,0,0,0};\r
+ uint16_t TRef[4]={0,0,0,0};\r
+ float SensX[4];\r
+ float SensY[4];\r
+ float SensZ[4];\r
+ \r
+ //For CLK setting\r
+ CLKPR = (0<<CLKPCE); // No prescale\r
+ CLKPR = 0x00; //prescaler 2\r
+ PRR = 0;\r
+ //Init UART\r
+ uinit();\r
+\r
+ //Init I2C/TWI\r
+ twi_init();\r
+\r
+ //Init Magnetic field Sensor\r
+ Status[0] = InitMagSensor(ADDR_MAG_0, &TRef[0], &SensX[0], &SensY[0], &SensZ[0]);\r
+ Status[1] = InitMagSensor(ADDR_MAG_1, &TRef[1], &SensX[1], &SensY[1], &SensZ[1]);\r
+ Status[2] = InitMagSensor(ADDR_MAG_2, &TRef[2], &SensX[2], &SensY[2], &SensZ[2]);\r
+ Status[3] = InitMagSensor(ADDR_MAG_3, &TRef[3], &SensX[3], &SensY[3], &SensZ[3]);\r
+\r
+ // sprintf(s,"%u", Status[0]);\r
+ //uputs(s);\r
+ _delay_ms(300);\r
+\r
+ while (1)\r
+ { \r
+ /*if (Status[0] == 0) { */MeasureMagSens(ADDR_MAG_0, TRef[0], &SensX[0], &SensY[0], &SensZ[0]);/*}\r
+ else { uputsnl("ERR Mag 0 NO_DEVICE"); }\r
+ if (Status[1] == 0) { MeasureMagSens(ADDR_MAG_1, TRef[1], &SensX[1], &SensY[1], &SensZ[1]);}\r
+ else { uputsnl("ERR Mag 1 NO_DEVICE"); }\r
+ if (Status[2] == 0) { MeasureMagSens(ADDR_MAG_2, TRef[2], &SensX[2], &SensY[2], &SensZ[2]);}\r
+ else { uputsnl("ERR Mag 2 NO_DEVICE"); }\r
+ if (Status[3] == 0) { MeasureMagSens(ADDR_MAG_3, TRef[3], &SensX[3], &SensY[3], &SensZ[3]);}\r
+ else { uputsnl("ERR Mag 3 NO_DEVICE"); }*/\r
+\r
+ _delay_ms(500);\r
+\r
+ }\r
+ cli();\r
+ return 0;\r
+}\r
+\r
--- /dev/null
+/*\r
+ * main.h\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+\r
+#ifndef MAIN_H_\r
+#define MAIN_H_\r
+\r
+#include <avr/io.h>\r
+#include <util/delay.h>\r
+#include <string.h>\r
+#include <stdlib.h>\r
+#include <stdio.h>\r
+#include <stdint.h>\r
+#include <stdbool.h>\r
+#include <inttypes.h>\r
+#include <math.h>\r
+#include "uart/uart.h"\r
+#include "MagnetSensor.h"\r
+#include "twi/twi.h"\r
+#include <avr/interrupt.h>\r
+#include <avr/pgmspace.h>\r
+\r
+\r
+#ifndef F_CPU\r
+#define F_CPU 16000000\r
+#endif\r
+\r
+# define USART_BAUDRATE 19200\r
+# define BAUD_PRESCALE (unsigned int)(1.0 * F_CPU / USART_BAUDRATE / 16 - 0.5);\r
+\r
+#define ADDR_MAG_0 0x0C\r
+#define ADDR_MAG_1 0x0D\r
+#define ADDR_MAG_2 0x0E\r
+#define ADDR_MAG_3 0x0F\r
+\r
+\r
+\r
+\r
+#ifndef __AVR_ATmega168P__\r
+#define __AVR_ATmega168P__\r
+#endif /* MAIN_H_ */\r
+\r
+\r
+#endif\r
--- /dev/null
+/*\r
+ * main.h\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: Adrian Weber\r
+ */\r
+\r
+#ifndef MAIN_H_\r
+#define MAIN_H_\r
+\r
+#include <avr/io.h>\r
+#include <util/delay.h>\r
+#include <string.h>\r
+#include <stdlib.h>\r
+#include <stdio.h>\r
+#include <stdint.h>\r
+#include <stdbool.h>\r
+#include <inttypes.h>\r
+#include <math.h>\r
+#include "uart/uart.h"\r
+#include "MagnetSensor.h"\r
+#include "twi/twi.h"\r
+#include <avr/interrupt.h>\r
+#include <avr/pgmspace.h>\r
+\r
+\r
+#ifndef F_CPU\r
+#define F_CPU 16000000\r
+#endif\r
+\r
+# define USART_BAUDRATE 19200\r
+# define BAUD_PRESCALE (unsigned int)(1.0 * F_CPU / USART_BAUDRATE / 16 - 0.5);\r
+\r
+#define ADDR_MAG_0 0x0C\r
+#define ADDR_MAG_1 0x0D\r
+#define ADDR_MAG_2 0x0E\r
+#define ADDR_MAG_3 0x0F\r
+\r
+\r
+\r
+\r
+#ifndef __AVR_ATmega168PA__\r
+#define __AVR_ATmega168PA__\r
+#endif /* MAIN_H_ */\r
+\r
+\r
+#endif\r
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+#include "uart.h"\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (1 << PD0);\r
+ PORTD |= (1 << PD1);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (0 << PD0);\r
+ PORTD |= (0 << PD1);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ sei();\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*\r
+ twi.c - TWI/I2C library for Atmega32U4\r
+\r
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.\r
+\r
+ This library is free software; you can redistribute it and/or\r
+ modify it under the terms of the GNU Lesser General Public\r
+ License as published by the Free Software Foundation; either\r
+ version 2.1 of the License, or (at your option) any later version.\r
+\r
+ This library is distributed in the hope that it will be useful,\r
+ but WITHOUT ANY WARRANTY; without even the implied warranty of\r
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU\r
+ Lesser General Public License for more details.\r
+\r
+ You should have received a copy of the GNU Lesser General Public\r
+ License along with this library; if not, write to the Free Software\r
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA\r
+\r
+ Modified 2012 by Todd Krein (todd@krein.org) to implement repeated starts\r
+\r
+ Modified 2017 by Adrian Weber to use I2C without Arduino librarys\r
+*/\r
+\r
+#include <math.h>\r
+#include <stdlib.h>\r
+#include <inttypes.h>\r
+#include <avr/io.h>\r
+#include <avr/interrupt.h>\r
+#include <compat/twi.h>\r
+#include <stdbool.h>\r
+\r
+#ifndef cbi\r
+#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))\r
+#endif\r
+\r
+#ifndef sbi\r
+#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))\r
+#endif\r
+#include "twi.h"\r
+\r
+static volatile uint8_t twi_state;\r
+static volatile uint8_t twi_slarw;\r
+static volatile uint8_t twi_sendStop; // should the transaction end with a stop\r
+static volatile uint8_t twi_inRepStart; // in the middle of a repeated start\r
+\r
+static void (*twi_onSlaveTransmit)(void);\r
+static void (*twi_onSlaveReceive)(uint8_t*, int);\r
+\r
+static uint8_t twi_masterBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_masterBufferIndex;\r
+static volatile uint8_t twi_masterBufferLength;\r
+\r
+static uint8_t twi_txBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_txBufferIndex;\r
+static volatile uint8_t twi_txBufferLength;\r
+\r
+static uint8_t twi_rxBuffer[TWI_BUFFER_LENGTH];\r
+static volatile uint8_t twi_rxBufferIndex;\r
+\r
+static volatile uint8_t twi_error;\r
+\r
+\r
+/* \r
+ * Function twi_init\r
+ * Desc readys twi pins and sets twi bitrate\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_init(void)\r
+{\r
+ // initialize state\r
+ twi_state = TWI_READY;\r
+ twi_sendStop = true; // default value\r
+ twi_inRepStart = false;\r
+ \r
+ // activate internal pullups for twi.\r
+ DDRD |= (1 << PC4);\r
+ DDRD |= (1 << PC5);\r
+ PORTD |= (1 << PC4);\r
+ PORTD |= (1 << PC5);\r
+\r
+ // initialize twi prescaler and bit rate\r
+ cbi(TWSR, TWPS0);\r
+ cbi(TWSR, TWPS1);\r
+ TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;\r
+\r
+ sei();\r
+\r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+\r
+ // enable twi module, acks, and twi interrupt\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA);\r
+}\r
+\r
+/* \r
+ * Function twi_disable\r
+ * Desc disables twi pins\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_disable(void)\r
+{\r
+ // disable twi module, acks, and twi interrupt\r
+ TWCR &= ~(_BV(TWEN) | _BV(TWIE) | _BV(TWEA));\r
+\r
+ // deactivate internal pullups for twi.\r
+ DDRD |= (1 << PD0);\r
+ DDRD |= (1 << PD1);\r
+ PORTD |= (0 << PD0);\r
+ PORTD |= (0 << PD1);\r
+\r
+}\r
+\r
+/* \r
+ * Function twi_slaveInit\r
+ * Desc sets slave address and enables interrupt\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_setAddress(uint8_t address)\r
+{\r
+ // set twi slave address (skip over TWGCE bit)\r
+ TWAR = address << 1;\r
+}\r
+\r
+/* \r
+ * Function twi_setClock\r
+ * Desc sets twi bit rate\r
+ * Input Clock Frequency\r
+ * Output none\r
+ */\r
+void twi_setFrequency(uint32_t frequency)\r
+{\r
+ TWBR = ((F_CPU / frequency) - 16) / 2;\r
+ \r
+ /* twi bit rate formula from atmega128 manual pg 204\r
+ SCL Frequency = CPU Clock Frequency / (16 + (2 * TWBR))\r
+ note: TWBR should be 10 or higher for master mode\r
+ It is 72 for a 16mhz Wiring board with 100kHz TWI */\r
+}\r
+\r
+/* \r
+ * Function twi_readFrom\r
+ * Desc attempts to become twi bus master and read a\r
+ * series of bytes from a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes to read into array\r
+ * sendStop: Boolean indicating whether to send a stop at the end\r
+ * Output number of bytes read\r
+ */\r
+uint8_t twi_readFrom(uint8_t address, uint8_t* data, uint8_t length, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 0;\r
+ }\r
+ // wait until twi is ready, become master receiver\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ } \r
+ twi_state = TWI_MRX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length-1; // This is not intuitive, read on...\r
+ // On receive, the previously configured ACK/NACK setting is transmitted in\r
+ // response to the received byte before the interrupt is signalled. \r
+ // Therefor we must actually set NACK when the _next_ to last byte is\r
+ // received, causing that NACK to be sent in response to receiving the last\r
+ // expected byte of data.\r
+\r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_READ;\r
+ twi_slarw |= address << 1;\r
+\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent ourselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw;\r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTA);\r
+\r
+ // wait for read operation to complete\r
+ while(TWI_MRX == twi_state){\r
+ continue;\r
+ }\r
+\r
+ if (twi_masterBufferIndex < length)\r
+ length = twi_masterBufferIndex;\r
+\r
+ // copy twi buffer to data\r
+ for(i = 0; i < length; ++i){\r
+ data[i] = twi_masterBuffer[i];\r
+ }\r
+ \r
+ return length;\r
+}\r
+\r
+/* \r
+ * Function twi_writeTo\r
+ * Desc attempts to become twi bus master and write a\r
+ * series of bytes to a device on the bus\r
+ * Input address: 7bit i2c device address\r
+ * data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * wait: boolean indicating to wait for write or not\r
+ * sendStop: boolean indicating whether or not to send a stop at the end\r
+ * Output 0 .. success\r
+ * 1 .. length to long for buffer\r
+ * 2 .. address send, NACK received\r
+ * 3 .. data send, NACK received\r
+ * 4 .. other twi error (lost bus arbitration, bus error, ..)\r
+ */\r
+uint8_t twi_writeTo(uint8_t address, uint8_t* data, uint8_t length, uint8_t wait, uint8_t sendStop)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+\r
+ // wait until twi is ready, become master transmitter\r
+ while(TWI_READY != twi_state){\r
+ continue;\r
+ }\r
+ twi_state = TWI_MTX;\r
+ twi_sendStop = sendStop;\r
+ // reset error state (0xFF.. no error occured)\r
+ twi_error = 0xFF;\r
+\r
+ // initialize buffer iteration vars\r
+ twi_masterBufferIndex = 0;\r
+ twi_masterBufferLength = length;\r
+ \r
+ // copy data to twi buffer\r
+ for(i = 0; i < length; ++i){\r
+ twi_masterBuffer[i] = data[i];\r
+ }\r
+ \r
+ // build sla+w, slave device address + w bit\r
+ twi_slarw = TW_WRITE;\r
+ twi_slarw |= address << 1;\r
+ \r
+\r
+ // if we're in a repeated start, then we've already sent the START\r
+ // in the ISR. Don't do it again.\r
+ //\r
+ if (true == twi_inRepStart) {\r
+ // if we're in the repeated start state, then we've already sent the start,\r
+ // (@@@ we hope), and the TWI statemachine is just waiting for the address byte.\r
+ // We need to remove ourselves from the repeated start state before we enable interrupts,\r
+ // since the ISR is ASYNC, and we could get confused if we hit the ISR before cleaning\r
+ // up. Also, don't enable the START interrupt. There may be one pending from the \r
+ // repeated start that we sent outselves, and that would really confuse things.\r
+ twi_inRepStart = false; // remember, we're dealing with an ASYNC ISR\r
+ do {\r
+ TWDR = twi_slarw; \r
+ } while(TWCR & _BV(TWWC));\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE); // enable INTs, but not START\r
+ }\r
+ else\r
+ // send start condition\r
+ TWCR = _BV(TWINT) | _BV(TWEA) | _BV(TWEN) | _BV(TWIE) | _BV(TWSTA); // enable INTs\r
+\r
+\r
+ // wait for write operation to complete\r
+ while(wait && (TWI_MTX == twi_state)){\r
+ continue;\r
+ }\r
+\r
+ if (twi_error == 0xFF)\r
+ return 0; // success\r
+ else if (twi_error == TW_MT_SLA_NACK)\r
+ return 2; // error: address send, nack received\r
+ else if (twi_error == TW_MT_DATA_NACK)\r
+ return 3; // error: data send, nack received\r
+ else\r
+ return 4; // other twi error\r
+}\r
+\r
+/* \r
+ * Function twi_transmit\r
+ * Desc fills slave tx buffer with data\r
+ * must be called in slave tx event callback\r
+ * Input data: pointer to byte array\r
+ * length: number of bytes in array\r
+ * Output 1 length too long for buffer\r
+ * 2 not slave transmitter\r
+ * 0 ok\r
+ */\r
+uint8_t twi_transmit(const uint8_t* data, uint8_t length)\r
+{\r
+ uint8_t i;\r
+\r
+ // ensure data will fit into buffer\r
+ if(TWI_BUFFER_LENGTH < length){\r
+ return 1;\r
+ }\r
+ \r
+ // ensure we are currently a slave transmitter\r
+ if(TWI_STX != twi_state){\r
+ return 2;\r
+ }\r
+ \r
+ // set length and copy data into tx buffer\r
+ twi_txBufferLength = length;\r
+ for(i = 0; i < length; ++i){\r
+ twi_txBuffer[i] = data[i];\r
+ }\r
+ \r
+ return 0;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveRxEvent\r
+ * Desc sets function called before a slave read operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveRxEvent( void (*function)(uint8_t*, int) )\r
+{\r
+ twi_onSlaveReceive = function;\r
+}\r
+\r
+/* \r
+ * Function twi_attachSlaveTxEvent\r
+ * Desc sets function called before a slave write operation\r
+ * Input function: callback function to use\r
+ * Output none\r
+ */\r
+void twi_attachSlaveTxEvent( void (*function)(void) )\r
+{\r
+ twi_onSlaveTransmit = function;\r
+}\r
+\r
+/* \r
+ * Function twi_reply\r
+ * Desc sends byte or readys receive line\r
+ * Input ack: byte indicating to ack or to nack\r
+ * Output none\r
+ */\r
+void twi_reply(uint8_t ack)\r
+{\r
+ // transmit master read ready signal, with or without ack\r
+ if(ack){\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT) | _BV(TWEA);\r
+ }else{\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWINT);\r
+ }\r
+}\r
+\r
+/* \r
+ * Function twi_stop\r
+ * Desc relinquishes bus master status\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_stop(void)\r
+{\r
+ // send stop condition\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT) | _BV(TWSTO);\r
+\r
+ // wait for stop condition to be exectued on bus\r
+ // TWINT is not set after a stop condition!\r
+ while(TWCR & _BV(TWSTO)){\r
+ continue;\r
+ }\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+/* \r
+ * Function twi_releaseBus\r
+ * Desc releases bus control\r
+ * Input none\r
+ * Output none\r
+ */\r
+void twi_releaseBus(void)\r
+{\r
+ // release bus\r
+ TWCR = _BV(TWEN) | _BV(TWIE) | _BV(TWEA) | _BV(TWINT);\r
+\r
+ // update twi state\r
+ twi_state = TWI_READY;\r
+}\r
+\r
+ISR(TWI_vect)\r
+{\r
+ switch(TW_STATUS){\r
+ // All Master\r
+ case TW_START: // sent start condition\r
+ case TW_REP_START: // sent repeated start condition\r
+ // copy device address and r/w bit to output register and ack\r
+ TWDR = twi_slarw;\r
+ twi_reply(1);\r
+ break;\r
+\r
+ // Master Transmitter\r
+ case TW_MT_SLA_ACK: // slave receiver acked address\r
+ case TW_MT_DATA_ACK: // slave receiver acked data\r
+ // if there is data to send, send it, otherwise stop \r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ // copy data to output register and ack\r
+ TWDR = twi_masterBuffer[twi_masterBufferIndex++];\r
+ twi_reply(1);\r
+ }else{\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ }\r
+ }\r
+ break;\r
+ case TW_MT_SLA_NACK: // address sent, nack received\r
+ twi_error = TW_MT_SLA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_DATA_NACK: // data sent, nack received\r
+ twi_error = TW_MT_DATA_NACK;\r
+ twi_stop();\r
+ break;\r
+ case TW_MT_ARB_LOST: // lost bus arbitration\r
+ twi_error = TW_MT_ARB_LOST;\r
+ twi_releaseBus();\r
+ break;\r
+\r
+ // Master Receiver\r
+ case TW_MR_DATA_ACK: // data received, ack sent\r
+ // put byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ case TW_MR_SLA_ACK: // address sent, ack received\r
+ // ack if more bytes are expected, otherwise nack\r
+ if(twi_masterBufferIndex < twi_masterBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_MR_DATA_NACK: // data received, nack sent\r
+ // put final byte into buffer\r
+ twi_masterBuffer[twi_masterBufferIndex++] = TWDR;\r
+ if (twi_sendStop)\r
+ twi_stop();\r
+ else {\r
+ twi_inRepStart = true; // we're gonna send the START\r
+ // don't enable the interrupt. We'll generate the start, but we \r
+ // avoid handling the interrupt until we're in the next transaction,\r
+ // at the point where we would normally issue the start.\r
+ TWCR = _BV(TWINT) | _BV(TWSTA)| _BV(TWEN) ;\r
+ twi_state = TWI_READY;\r
+ } \r
+ break;\r
+ case TW_MR_SLA_NACK: // address sent, nack received\r
+ twi_stop();\r
+ break;\r
+ // TW_MR_ARB_LOST handled by TW_MT_ARB_LOST case\r
+\r
+ // Slave Receiver\r
+ case TW_SR_SLA_ACK: // addressed, returned ack\r
+ case TW_SR_GCALL_ACK: // addressed generally, returned ack\r
+ case TW_SR_ARB_LOST_SLA_ACK: // lost arbitration, returned ack\r
+ case TW_SR_ARB_LOST_GCALL_ACK: // lost arbitration, returned ack\r
+ // enter slave receiver mode\r
+ twi_state = TWI_SRX;\r
+ // indicate that rx buffer can be overwritten and ack\r
+ twi_rxBufferIndex = 0;\r
+ twi_reply(1);\r
+ break;\r
+ case TW_SR_DATA_ACK: // data received, returned ack\r
+ case TW_SR_GCALL_DATA_ACK: // data received generally, returned ack\r
+ // if there is still room in the rx buffer\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ // put byte in buffer and ack\r
+ twi_rxBuffer[twi_rxBufferIndex++] = TWDR;\r
+ twi_reply(1);\r
+ }else{\r
+ // otherwise nack\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_SR_STOP: // stop or repeated start condition received\r
+ // ack future responses and leave slave receiver state\r
+ twi_releaseBus();\r
+ // put a null char after data if there's room\r
+ if(twi_rxBufferIndex < TWI_BUFFER_LENGTH){\r
+ twi_rxBuffer[twi_rxBufferIndex] = '\0';\r
+ }\r
+ // callback to user defined callback\r
+ twi_onSlaveReceive(twi_rxBuffer, twi_rxBufferIndex);\r
+ // since we submit rx buffer to "wire" library, we can reset it\r
+ twi_rxBufferIndex = 0;\r
+ break;\r
+ case TW_SR_DATA_NACK: // data received, returned nack\r
+ case TW_SR_GCALL_DATA_NACK: // data received generally, returned nack\r
+ // nack back at master\r
+ twi_reply(0);\r
+ break;\r
+ \r
+ // Slave Transmitter\r
+ case TW_ST_SLA_ACK: // addressed, returned ack\r
+ case TW_ST_ARB_LOST_SLA_ACK: // arbitration lost, returned ack\r
+ // enter slave transmitter mode\r
+ twi_state = TWI_STX;\r
+ // ready the tx buffer index for iteration\r
+ twi_txBufferIndex = 0;\r
+ // set tx buffer length to be zero, to verify if user changes it\r
+ twi_txBufferLength = 0;\r
+ // request for txBuffer to be filled and length to be set\r
+ // note: user must call twi_transmit(bytes, length) to do this\r
+ twi_onSlaveTransmit();\r
+ // if they didn't change buffer & length, initialize it\r
+ if(0 == twi_txBufferLength){\r
+ twi_txBufferLength = 1;\r
+ twi_txBuffer[0] = 0x00;\r
+ }\r
+ // transmit first byte from buffer, fall\r
+ case TW_ST_DATA_ACK: // byte sent, ack returned\r
+ // copy data to output register\r
+ TWDR = twi_txBuffer[twi_txBufferIndex++];\r
+ // if there is more to send, ack, otherwise nack\r
+ if(twi_txBufferIndex < twi_txBufferLength){\r
+ twi_reply(1);\r
+ }else{\r
+ twi_reply(0);\r
+ }\r
+ break;\r
+ case TW_ST_DATA_NACK: // received nack, we are done \r
+ case TW_ST_LAST_DATA: // received ack, but we are done already!\r
+ // ack future responses\r
+ twi_reply(1);\r
+ // leave slave receiver state\r
+ twi_state = TWI_READY;\r
+ break;\r
+\r
+ // All\r
+ case TW_NO_INFO: // no state information\r
+ break;\r
+ case TW_BUS_ERROR: // bus error, illegal stop/start\r
+ twi_error = TW_BUS_ERROR;\r
+ twi_stop();\r
+ break;\r
+ }\r
+}\r
+\r
--- /dev/null
+/*
+ twi.h - TWI/I2C library for Wiring & Arduino
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#ifndef twi_h
+#define twi_h
+ #include <inttypes.h>
+
+ #ifndef TWI_FREQ
+ #define TWI_FREQ 100000L
+ #endif
+
+ #ifndef TWI_BUFFER_LENGTH
+ #define TWI_BUFFER_LENGTH 32
+ #endif
+
+ #define TWI_READY 0
+ #define TWI_MRX 1
+ #define TWI_MTX 2
+ #define TWI_SRX 3
+ #define TWI_STX 4
+
+ void twi_init(void);
+ void twi_disable(void);
+ void twi_setAddress(uint8_t);
+ void twi_setFrequency(uint32_t);
+ uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
+ uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
+ uint8_t twi_transmit(const uint8_t*, uint8_t);
+ void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
+ void twi_attachSlaveTxEvent( void (*)(void) );
+ void twi_reply(uint8_t);
+ void twi_stop(void);
+ void twi_releaseBus(void);
+
+#endif
+
--- /dev/null
+/*
+ twi.h - TWI/I2C library for Wiring & Arduino
+ Copyright (c) 2006 Nicholas Zambetti. All right reserved.
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with this library; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+*/
+
+#ifndef twi_h
+#define twi_h
+ #include <inttypes.h>
+
+ //#define ATMEGA8
+
+ #ifndef TWI_FREQ
+ #define TWI_FREQ 100000L
+ #endif
+
+ #ifndef TWI_BUFFER_LENGTH
+ #define TWI_BUFFER_LENGTH 32
+ #endif
+
+ #define TWI_READY 0
+ #define TWI_MRX 1
+ #define TWI_MTX 2
+ #define TWI_SRX 3
+ #define TWI_STX 4
+
+ void twi_init(void);
+ void twi_disable(void);
+ void twi_setAddress(uint8_t);
+ void twi_setFrequency(uint32_t);
+ uint8_t twi_readFrom(uint8_t, uint8_t*, uint8_t, uint8_t);
+ uint8_t twi_writeTo(uint8_t, uint8_t*, uint8_t, uint8_t, uint8_t);
+ uint8_t twi_transmit(const uint8_t*, uint8_t);
+ void twi_attachSlaveRxEvent( void (*)(uint8_t*, int) );
+ void twi_attachSlaveTxEvent( void (*)(void) );
+ void twi_reply(uint8_t);
+ void twi_stop(void);
+ void twi_releaseBus(void);
+
+#endif
+
--- /dev/null
+/*\r
+ * uart.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: adria\r
+ */\r
+#include "main.h"\r
+\r
+void uinit()\r
+{\r
+ unsigned int baud = BAUD_PRESCALE;\r
+\r
+ // Set baud rate\r
+ UBRR0H = (unsigned char)(baud>>8);\r
+ UBRR0L = (unsigned char)baud;\r
+ UCSR0A = 0;\r
+ //Disable receiver and Enable transmitter\r
+ UCSR0B |= (0 << RXCIE0) | (0 << TXCIE0) | (0 << UDRIE0) | (0 << RXEN0) | ( 1 << TXEN0);//(1<<TXEN0);\r
+ //Set frame format: 8data, 1stop bit\r
+ UCSR0C |= (0<<USBS0)|(3<<UCSZ00);\r
+}\r
+\r
+void uputchar( char c )\r
+{\r
+ // Wait for empty transmit buffer\r
+ while ( !( UCSR0A & (1<<UDRE0)) );\r
+ //Put data into buffer, sends the data\r
+ UDR0 = c;\r
+}\r
+\r
+void uputs( char *s )\r
+{\r
+ while( *s )\r
+ uputchar( *s++ );\r
+}\r
+\r
+void uputsnl( char *s )\r
+{\r
+ uputs( s );\r
+ uputchar('\r');\r
+ uputchar('\n');\r
+ }\r
--- /dev/null
+/*\r
+ * uart.c\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: adria\r
+ */\r
+#include "main.h"\r
+\r
+void uinit()\r
+{\r
+ unsigned int baud = BAUD_PRESCALE;\r
+\r
+ // Set baud rate\r
+ UBRR0H = (unsigned char)(baud>>8);\r
+ UBRR0L = (unsigned char)baud;\r
+ UCSR0A = 0;\r
+ //Disable receiver and Enable transmitter\r
+ UCSR0B |= (0 << RXCIE0) | (0 << TXCIE0) | (0 << UDRIE0) | (0 << RXEN0) | ( 1 << TXEN0);//(1<<TXEN0);\r
+ //Set frame format: 8data, 1stop bit\r
+ UCSR0C |= (0<<USBS0)|(3<<UCSZ00);\r
+}\r
+\r
+void uputchar( char c )\r
+{\r
+ // Wait for empty transmit buffer\r
+ while ( !( UCSR0A & (1<<UDRE0)) );\r
+ //Put data into buffer, sends the data\r
+ UDR0 = c;\r
+}\r
+\r
+void uputs( char *s )\r
+{\r
+ while( *s )\r
+ uputchar( *s++ );\r
+}\r
+\r
+void uputsnl( char *s )\r
+{\r
+ uputs( s );\r
+ uputchar('\r');\r
+ uputchar('\n');\r
+ }\r
--- /dev/null
+/*\r
+ * uart.h\r
+ *\r
+ * Created on: 07.03.2017\r
+ * Author: adria\r
+ */\r
+\r
+#ifndef UART_H_\r
+#define UART_H_\r
+\r
+void uinit( void );\r
+void uputchar( char c );\r
+void uputs( char *s );\r
+void uputsnl( char *s );\r
+\r
+#endif /* UART_H_ */\r