From: Michael Wiebusch Date: Thu, 20 Nov 2014 13:52:29 +0000 (+0100) Subject: started development on peltier controller gui X-Git-Url: https://jspc29.x-matter.uni-frankfurt.de/git/?a=commitdiff_plain;h=9fb1e7af09e7c2d1ee963dc2d12030f61b2fcd66;p=labtools.git started development on peltier controller gui --- diff --git a/peltier_controller/arduino_sketch/DS18x20_Temperature_PID.ino b/peltier_controller/arduino_sketch/DS18x20_Temperature_PID.ino new file mode 100644 index 0000000..0392740 --- /dev/null +++ b/peltier_controller/arduino_sketch/DS18x20_Temperature_PID.ino @@ -0,0 +1,219 @@ + +#include + +#include + + +// OneWire DS18S20, DS18B20, DS1822 Temperature Example +// +// http://www.pjrc.com/teensy/td_libs_OneWire.html +// +// The DallasTemperature library can do all this work for you! +// http://milesburton.com/Dallas_Temperature_Control_Library + +OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary) + +//Define Variables we'll be connecting to +double Setpoint, Input, Output; + +int newSetpoint; + + + + byte i; + byte present; + byte type_s; + byte data[12]; + byte addr[8]; + float celsius, fahrenheit; + + +double aggKp=10, aggKi=0, aggKd=3; +double consKp=2, consKi=5, consKd=1; + +PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT); + +void setup(void) { + Serial.begin(9600); + + pinMode(3, OUTPUT); + digitalWrite(3, LOW); + + //initialize the variables we're linked to + Input = 20; + Setpoint = 20; + + //turn the PID on + myPID.SetMode(AUTOMATIC); + myPID.SetControllerDirection(REVERSE); + + + init_ds1820(); + + + +} + + +void init_ds1820(void){ + present = 0; + + if ( !ds.search(addr)) { + Serial.println("No more addresses."); + Serial.println(); + ds.reset_search(); + delay(250); + return; + } + + Serial.print("ROM ="); + for( i = 0; i < 8; i++) { + Serial.write(' '); + Serial.print(addr[i], HEX); + } + + if (OneWire::crc8(addr, 7) != addr[7]) { + Serial.println("CRC is not valid!"); + return; + } + Serial.println(); + + // the first ROM byte indicates which chip + switch (addr[0]) { + case 0x10: + Serial.println(" Chip = DS18S20"); // or old DS1820 + type_s = 1; + break; + case 0x28: + Serial.println(" Chip = DS18B20"); + type_s = 0; + break; + case 0x22: + Serial.println(" Chip = DS1822"); + type_s = 0; + break; + default: + Serial.println("Device is not a DS18x20 family device."); + return; + } + + + + + +} + +void loop(void) { + + ds.reset(); + ds.select(addr); + ds.write(0x44, 1); // start conversion, with parasite power on at the end + + //delay(1000); // maybe 750ms is enough, maybe not + // we might do a ds.depower() here, but the reset will take care of it. + + + digitalWrite(3, HIGH); + + for(int i = 0; i<1000; i++){ + if( i >= Output*100){ + digitalWrite(3, LOW); + } + delay(1); + } + + present = ds.reset(); + ds.select(addr); + ds.write(0xBE); // Read Scratchpad + + //Serial.print(" Data = "); + //Serial.print(present, HEX); + //Serial.print(" "); + for ( i = 0; i < 9; i++) { // we need 9 bytes + data[i] = ds.read(); + //Serial.print(data[i], HEX); + //Serial.print(" "); + } +// Serial.print(" CRC="); +// Serial.print(OneWire::crc8(data, 8), HEX); + Serial.println(); + + // Convert the data to actual temperature + // because the result is a 16 bit signed integer, it should + // be stored to an "int16_t" type, which is always 16 bits + // even when compiled on a 32 bit processor. + int16_t raw = (data[1] << 8) | data[0]; + if (type_s) { + raw = raw << 3; // 9 bit resolution default + if (data[7] == 0x10) { + // "count remain" gives full 12 bit resolution + raw = (raw & 0xFFF0) + 12 - data[6]; + } + } else { + byte cfg = (data[4] & 0x60); + // at lower res, the low bits are undefined, so let's zero them + if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms + else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms + else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms + //// default is 12 bit resolution, 750 ms conversion time + } + celsius = (float)raw / 16.0; + fahrenheit = celsius * 1.8 + 32.0; + + Input = celsius; + + double gap = abs(Setpoint-Input); //distance away from setpoint + if(gap<2) + { //we're close to setpoint, use conservative tuning parameters + myPID.SetTunings(consKp, consKi, consKd); + Serial.println(" conservative PID constants"); + } + else + { + //we're far from setpoint, use aggressive tuning parameters + myPID.SetTunings(aggKp, aggKi, aggKd); + Serial.println(" aggressive PID constants"); + } + + + myPID.Compute(); + + Serial.print(" Setpoint = "); + Serial.print(Setpoint); + Serial.println(" Celsius"); + Serial.print(" Temperature = "); + Serial.print(celsius); + Serial.println(" Celsius"); +// Serial.print(fahrenheit); +// Serial.println(" Fahrenheit"); + //analogWrite(3,Output); + Serial.print(" PID Output = "); + Serial.println(Output); + Serial.println("-----"); + + + + + // send data only when you receive data: + while (Serial.available() > 0) { + // read the incoming byte: + //byte incomingByte = Serial.read(); + + // say what you got: + //Serial.print("I received: "); + //Serial.println(incomingByte, DEC); + + newSetpoint = Serial.parseInt(); + + if (Serial.read() == '\n') { + + Serial.print("received new setpoint: "); + Setpoint = newSetpoint; + Serial.println(Setpoint); + } + + + } + + +} diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.cpp b/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.cpp new file mode 100644 index 0000000..631813f --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.cpp @@ -0,0 +1,557 @@ +/* +Copyright (c) 2007, Jim Studt (original old version - many contributors since) + +The latest version of this library may be found at: + http://www.pjrc.com/teensy/td_libs_OneWire.html + +OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since +January 2010. At the time, it was in need of many bug fixes, but had +been abandoned the original author (Jim Studt). None of the known +contributors were interested in maintaining OneWire. Paul typically +works on OneWire every 6 to 12 months. Patches usually wait that +long. If anyone is interested in more actively maintaining OneWire, +please contact Paul. + +Version 2.2: + Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com + Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030 + Fix DS18B20 example negative temperature + Fix DS18B20 example's low res modes, Ken Butcher + Improve reset timing, Mark Tillotson + Add const qualifiers, Bertrik Sikken + Add initial value input to crc16, Bertrik Sikken + Add target_search() function, Scott Roberts + +Version 2.1: + Arduino 1.0 compatibility, Paul Stoffregen + Improve temperature example, Paul Stoffregen + DS250x_PROM example, Guillermo Lovato + PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com + Improvements from Glenn Trewitt: + - crc16() now works + - check_crc16() does all of calculation/checking work. + - Added read_bytes() and write_bytes(), to reduce tedious loops. + - Added ds2408 example. + Delete very old, out-of-date readme file (info is here) + +Version 2.0: Modifications by Paul Stoffregen, January 2010: +http://www.pjrc.com/teensy/td_libs_OneWire.html + Search fix from Robin James + http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 + Use direct optimized I/O in all cases + Disable interrupts during timing critical sections + (this solves many random communication errors) + Disable interrupts during read-modify-write I/O + Reduce RAM consumption by eliminating unnecessary + variables and trimming many to 8 bits + Optimize both crc8 - table version moved to flash + +Modified to work with larger numbers of devices - avoids loop. +Tested in Arduino 11 alpha with 12 sensors. +26 Sept 2008 -- Robin James +http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27 + +Updated to work with arduino-0008 and to include skip() as of +2007/07/06. --RJL20 + +Modified to calculate the 8-bit CRC directly, avoiding the need for +the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010 +-- Tom Pollard, Jan 23, 2008 + +Jim Studt's original library was modified by Josh Larios. + +Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008 + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +Much of the code was inspired by Derek Yerger's code, though I don't +think much of that remains. In any event that was.. + (copyleft) 2006 by Derek Yerger - Free to distribute freely. + +The CRC code was excerpted and inspired by the Dallas Semiconductor +sample code bearing this copyright. +//--------------------------------------------------------------------------- +// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved. +// +// Permission is hereby granted, free of charge, to any person obtaining a +// copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included +// in all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES +// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +// OTHER DEALINGS IN THE SOFTWARE. +// +// Except as contained in this notice, the name of Dallas Semiconductor +// shall not be used except as stated in the Dallas Semiconductor +// Branding Policy. +//-------------------------------------------------------------------------- +*/ + +#include "OneWire.h" + + +OneWire::OneWire(uint8_t pin) +{ + pinMode(pin, INPUT); + bitmask = PIN_TO_BITMASK(pin); + baseReg = PIN_TO_BASEREG(pin); +#if ONEWIRE_SEARCH + reset_search(); +#endif +} + + +// Perform the onewire reset function. We will wait up to 250uS for +// the bus to come high, if it doesn't then it is broken or shorted +// and we return a 0; +// +// Returns 1 if a device asserted a presence pulse, 0 otherwise. +// +uint8_t OneWire::reset(void) +{ + IO_REG_TYPE mask = bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + uint8_t r; + uint8_t retries = 125; + + noInterrupts(); + DIRECT_MODE_INPUT(reg, mask); + interrupts(); + // wait until the wire is high... just in case + do { + if (--retries == 0) return 0; + delayMicroseconds(2); + } while ( !DIRECT_READ(reg, mask)); + + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + interrupts(); + delayMicroseconds(480); + noInterrupts(); + DIRECT_MODE_INPUT(reg, mask); // allow it to float + delayMicroseconds(70); + r = !DIRECT_READ(reg, mask); + interrupts(); + delayMicroseconds(410); + return r; +} + +// +// Write a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +void OneWire::write_bit(uint8_t v) +{ + IO_REG_TYPE mask=bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + + if (v & 1) { + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(10); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + interrupts(); + delayMicroseconds(55); + } else { + noInterrupts(); + DIRECT_WRITE_LOW(reg, mask); + DIRECT_MODE_OUTPUT(reg, mask); // drive output low + delayMicroseconds(65); + DIRECT_WRITE_HIGH(reg, mask); // drive output high + interrupts(); + delayMicroseconds(5); + } +} + +// +// Read a bit. Port and bit is used to cut lookup time and provide +// more certain timing. +// +uint8_t OneWire::read_bit(void) +{ + IO_REG_TYPE mask=bitmask; + volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg; + uint8_t r; + + noInterrupts(); + DIRECT_MODE_OUTPUT(reg, mask); + DIRECT_WRITE_LOW(reg, mask); + delayMicroseconds(3); + DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise + delayMicroseconds(10); + r = DIRECT_READ(reg, mask); + interrupts(); + delayMicroseconds(53); + return r; +} + +// +// Write a byte. The writing code uses the active drivers to raise the +// pin high, if you need power after the write (e.g. DS18S20 in +// parasite power mode) then set 'power' to 1, otherwise the pin will +// go tri-state at the end of the write to avoid heating in a short or +// other mishap. +// +void OneWire::write(uint8_t v, uint8_t power /* = 0 */) { + uint8_t bitMask; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + OneWire::write_bit( (bitMask & v)?1:0); + } + if ( !power) { + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + DIRECT_WRITE_LOW(baseReg, bitmask); + interrupts(); + } +} + +void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) { + for (uint16_t i = 0 ; i < count ; i++) + write(buf[i]); + if (!power) { + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + DIRECT_WRITE_LOW(baseReg, bitmask); + interrupts(); + } +} + +// +// Read a byte +// +uint8_t OneWire::read() { + uint8_t bitMask; + uint8_t r = 0; + + for (bitMask = 0x01; bitMask; bitMask <<= 1) { + if ( OneWire::read_bit()) r |= bitMask; + } + return r; +} + +void OneWire::read_bytes(uint8_t *buf, uint16_t count) { + for (uint16_t i = 0 ; i < count ; i++) + buf[i] = read(); +} + +// +// Do a ROM select +// +void OneWire::select(const uint8_t rom[8]) +{ + uint8_t i; + + write(0x55); // Choose ROM + + for (i = 0; i < 8; i++) write(rom[i]); +} + +// +// Do a ROM skip +// +void OneWire::skip() +{ + write(0xCC); // Skip ROM +} + +void OneWire::depower() +{ + noInterrupts(); + DIRECT_MODE_INPUT(baseReg, bitmask); + interrupts(); +} + +#if ONEWIRE_SEARCH + +// +// You need to use this function to start a search again from the beginning. +// You do not need to do it for the first search, though you could. +// +void OneWire::reset_search() +{ + // reset the search state + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + for(int i = 7; ; i--) { + ROM_NO[i] = 0; + if ( i == 0) break; + } +} + +// Setup the search to find the device type 'family_code' on the next call +// to search(*newAddr) if it is present. +// +void OneWire::target_search(uint8_t family_code) +{ + // set the search state to find SearchFamily type devices + ROM_NO[0] = family_code; + for (uint8_t i = 1; i < 8; i++) + ROM_NO[i] = 0; + LastDiscrepancy = 64; + LastFamilyDiscrepancy = 0; + LastDeviceFlag = FALSE; +} + +// +// Perform a search. If this function returns a '1' then it has +// enumerated the next device and you may retrieve the ROM from the +// OneWire::address variable. If there are no devices, no further +// devices, or something horrible happens in the middle of the +// enumeration then a 0 is returned. If a new device is found then +// its address is copied to newAddr. Use OneWire::reset_search() to +// start over. +// +// --- Replaced by the one from the Dallas Semiconductor web site --- +//-------------------------------------------------------------------------- +// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing +// search state. +// Return TRUE : device found, ROM number in ROM_NO buffer +// FALSE : device not found, end of search +// +uint8_t OneWire::search(uint8_t *newAddr) +{ + uint8_t id_bit_number; + uint8_t last_zero, rom_byte_number, search_result; + uint8_t id_bit, cmp_id_bit; + + unsigned char rom_byte_mask, search_direction; + + // initialize for search + id_bit_number = 1; + last_zero = 0; + rom_byte_number = 0; + rom_byte_mask = 1; + search_result = 0; + + // if the last call was not the last one + if (!LastDeviceFlag) + { + // 1-Wire reset + if (!reset()) + { + // reset the search + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + return FALSE; + } + + // issue the search command + write(0xF0); + + // loop to do the search + do + { + // read a bit and its complement + id_bit = read_bit(); + cmp_id_bit = read_bit(); + + // check for no devices on 1-wire + if ((id_bit == 1) && (cmp_id_bit == 1)) + break; + else + { + // all devices coupled have 0 or 1 + if (id_bit != cmp_id_bit) + search_direction = id_bit; // bit write value for search + else + { + // if this discrepancy if before the Last Discrepancy + // on a previous next then pick the same as last time + if (id_bit_number < LastDiscrepancy) + search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0); + else + // if equal to last pick 1, if not then pick 0 + search_direction = (id_bit_number == LastDiscrepancy); + + // if 0 was picked then record its position in LastZero + if (search_direction == 0) + { + last_zero = id_bit_number; + + // check for Last discrepancy in family + if (last_zero < 9) + LastFamilyDiscrepancy = last_zero; + } + } + + // set or clear the bit in the ROM byte rom_byte_number + // with mask rom_byte_mask + if (search_direction == 1) + ROM_NO[rom_byte_number] |= rom_byte_mask; + else + ROM_NO[rom_byte_number] &= ~rom_byte_mask; + + // serial number search direction write bit + write_bit(search_direction); + + // increment the byte counter id_bit_number + // and shift the mask rom_byte_mask + id_bit_number++; + rom_byte_mask <<= 1; + + // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask + if (rom_byte_mask == 0) + { + rom_byte_number++; + rom_byte_mask = 1; + } + } + } + while(rom_byte_number < 8); // loop until through all ROM bytes 0-7 + + // if the search was successful then + if (!(id_bit_number < 65)) + { + // search successful so set LastDiscrepancy,LastDeviceFlag,search_result + LastDiscrepancy = last_zero; + + // check for last device + if (LastDiscrepancy == 0) + LastDeviceFlag = TRUE; + + search_result = TRUE; + } + } + + // if no device found then reset counters so next 'search' will be like a first + if (!search_result || !ROM_NO[0]) + { + LastDiscrepancy = 0; + LastDeviceFlag = FALSE; + LastFamilyDiscrepancy = 0; + search_result = FALSE; + } + for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i]; + return search_result; + } + +#endif + +#if ONEWIRE_CRC +// The 1-Wire CRC scheme is described in Maxim Application Note 27: +// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products" +// + +#if ONEWIRE_CRC8_TABLE +// This table comes from Dallas sample code where it is freely reusable, +// though Copyright (C) 2000 Dallas Semiconductor Corporation +static const uint8_t PROGMEM dscrc_table[] = { + 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65, + 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220, + 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98, + 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255, + 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7, + 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154, + 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36, + 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185, + 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205, + 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80, + 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238, + 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115, + 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139, + 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22, + 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168, + 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53}; + +// +// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM +// and the registers. (note: this might better be done without to +// table, it would probably be smaller and certainly fast enough +// compared to all those delayMicrosecond() calls. But I got +// confused, so I use this table from the examples.) +// +uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + crc = pgm_read_byte(dscrc_table + (crc ^ *addr++)); + } + return crc; +} +#else +// +// Compute a Dallas Semiconductor 8 bit CRC directly. +// this is much slower, but much smaller, than the lookup table. +// +uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len) +{ + uint8_t crc = 0; + + while (len--) { + uint8_t inbyte = *addr++; + for (uint8_t i = 8; i; i--) { + uint8_t mix = (crc ^ inbyte) & 0x01; + crc >>= 1; + if (mix) crc ^= 0x8C; + inbyte >>= 1; + } + } + return crc; +} +#endif + +#if ONEWIRE_CRC16 +bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc) +{ + crc = ~crc16(input, len, crc); + return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1]; +} + +uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc) +{ + static const uint8_t oddparity[16] = + { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 }; + + for (uint16_t i = 0 ; i < len ; i++) { + // Even though we're just copying a byte from the input, + // we'll be doing 16-bit computation with it. + uint16_t cdata = input[i]; + cdata = (cdata ^ crc) & 0xff; + crc >>= 8; + + if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4]) + crc ^= 0xC001; + + cdata <<= 6; + crc ^= cdata; + cdata <<= 1; + crc ^= cdata; + } + return crc; +} +#endif + +#endif diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.h b/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.h new file mode 100644 index 0000000..916c529 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/OneWire.h @@ -0,0 +1,229 @@ +#ifndef OneWire_h +#define OneWire_h + +#include + +#if ARDUINO >= 100 +#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc +#else +#include "WProgram.h" // for delayMicroseconds +#include "pins_arduino.h" // for digitalPinToBitMask, etc +#endif + +// You can exclude certain features from OneWire. In theory, this +// might save some space. In practice, the compiler automatically +// removes unused code (technically, the linker, using -fdata-sections +// and -ffunction-sections when compiling, and Wl,--gc-sections +// when linking), so most of these will not result in any code size +// reduction. Well, unless you try to use the missing features +// and redesign your program to not need them! ONEWIRE_CRC8_TABLE +// is the exception, because it selects a fast but large algorithm +// or a small but slow algorithm. + +// you can exclude onewire_search by defining that to 0 +#ifndef ONEWIRE_SEARCH +#define ONEWIRE_SEARCH 1 +#endif + +// You can exclude CRC checks altogether by defining this to 0 +#ifndef ONEWIRE_CRC +#define ONEWIRE_CRC 1 +#endif + +// Select the table-lookup method of computing the 8-bit CRC +// by setting this to 1. The lookup table enlarges code size by +// about 250 bytes. It does NOT consume RAM (but did in very +// old versions of OneWire). If you disable this, a slower +// but very compact algorithm is used. +#ifndef ONEWIRE_CRC8_TABLE +#define ONEWIRE_CRC8_TABLE 1 +#endif + +// You can allow 16-bit CRC checks by defining this to 1 +// (Note that ONEWIRE_CRC must also be 1.) +#ifndef ONEWIRE_CRC16 +#define ONEWIRE_CRC16 1 +#endif + +#define FALSE 0 +#define TRUE 1 + +// Platform specific I/O definitions + +#if defined(__AVR__) +#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin))) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint8_t +#define IO_REG_ASM asm("r30") +#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0) +#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask)) +#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask)) +#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask)) +#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask)) + +#elif defined(__MK20DX128__) +#define PIN_TO_BASEREG(pin) (portOutputRegister(pin)) +#define PIN_TO_BITMASK(pin) (1) +#define IO_REG_TYPE uint8_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (*((base)+512)) +#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0) +#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1) +#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1) +#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1) + +#elif defined(__SAM3X8E__) +// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due. +// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268 +// If you have trouble with OneWire on Arduino Due, please check the +// status of delayMicroseconds() before reporting a bug in OneWire! +#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER)) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint32_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0) +#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask)) +#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask)) +#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask)) +#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask)) +#ifndef PROGMEM +#define PROGMEM +#endif +#ifndef pgm_read_byte +#define pgm_read_byte(addr) (*(const uint8_t *)(addr)) +#endif + +#elif defined(__PIC32MX__) +#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin))) +#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin)) +#define IO_REG_TYPE uint32_t +#define IO_REG_ASM +#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10 +#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08 +#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04 +#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24 +#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28 + +#else +#error "Please define I/O register types here" +#endif + + +class OneWire +{ + private: + IO_REG_TYPE bitmask; + volatile IO_REG_TYPE *baseReg; + +#if ONEWIRE_SEARCH + // global search state + unsigned char ROM_NO[8]; + uint8_t LastDiscrepancy; + uint8_t LastFamilyDiscrepancy; + uint8_t LastDeviceFlag; +#endif + + public: + OneWire( uint8_t pin); + + // Perform a 1-Wire reset cycle. Returns 1 if a device responds + // with a presence pulse. Returns 0 if there is no device or the + // bus is shorted or otherwise held low for more than 250uS + uint8_t reset(void); + + // Issue a 1-Wire rom select command, you do the reset first. + void select(const uint8_t rom[8]); + + // Issue a 1-Wire rom skip command, to address all on bus. + void skip(void); + + // Write a byte. If 'power' is one then the wire is held high at + // the end for parasitically powered devices. You are responsible + // for eventually depowering it by calling depower() or doing + // another read or write. + void write(uint8_t v, uint8_t power = 0); + + void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0); + + // Read a byte. + uint8_t read(void); + + void read_bytes(uint8_t *buf, uint16_t count); + + // Write a bit. The bus is always left powered at the end, see + // note in write() about that. + void write_bit(uint8_t v); + + // Read a bit. + uint8_t read_bit(void); + + // Stop forcing power onto the bus. You only need to do this if + // you used the 'power' flag to write() or used a write_bit() call + // and aren't about to do another read or write. You would rather + // not leave this powered if you don't have to, just in case + // someone shorts your bus. + void depower(void); + +#if ONEWIRE_SEARCH + // Clear the search state so that if will start from the beginning again. + void reset_search(); + + // Setup the search to find the device type 'family_code' on the next call + // to search(*newAddr) if it is present. + void target_search(uint8_t family_code); + + // Look for the next device. Returns 1 if a new address has been + // returned. A zero might mean that the bus is shorted, there are + // no devices, or you have already retrieved all of them. It + // might be a good idea to check the CRC to make sure you didn't + // get garbage. The order is deterministic. You will always get + // the same devices in the same order. + uint8_t search(uint8_t *newAddr); +#endif + +#if ONEWIRE_CRC + // Compute a Dallas Semiconductor 8 bit CRC, these are used in the + // ROM and scratchpad registers. + static uint8_t crc8(const uint8_t *addr, uint8_t len); + +#if ONEWIRE_CRC16 + // Compute the 1-Wire CRC16 and compare it against the received CRC. + // Example usage (reading a DS2408): + // // Put everything in a buffer so we can compute the CRC easily. + // uint8_t buf[13]; + // buf[0] = 0xF0; // Read PIO Registers + // buf[1] = 0x88; // LSB address + // buf[2] = 0x00; // MSB address + // WriteBytes(net, buf, 3); // Write 3 cmd bytes + // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16 + // if (!CheckCRC16(buf, 11, &buf[11])) { + // // Handle error. + // } + // + // @param input - Array of bytes to checksum. + // @param len - How many bytes to use. + // @param inverted_crc - The two CRC16 bytes in the received data. + // This should just point into the received data, + // *not* at a 16-bit integer. + // @param crc - The crc starting value (optional) + // @return True, iff the CRC matches. + static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0); + + // Compute a Dallas Semiconductor 16 bit CRC. This is required to check + // the integrity of data received from many 1-Wire devices. Note that the + // CRC computed here is *not* what you'll get from the 1-Wire network, + // for two reasons: + // 1) The CRC is transmitted bitwise inverted. + // 2) Depending on the endian-ness of your processor, the binary + // representation of the two-byte return value may have a different + // byte order than the two bytes you get from 1-Wire. + // @param input - Array of bytes to checksum. + // @param len - How many bytes to use. + // @param crc - The crc starting value (optional) + // @return The CRC16, as defined by Dallas Semiconductor. + static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0); +#endif +#endif +}; + +#endif diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde new file mode 100644 index 0000000..68ca194 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde @@ -0,0 +1,112 @@ +#include + +// OneWire DS18S20, DS18B20, DS1822 Temperature Example +// +// http://www.pjrc.com/teensy/td_libs_OneWire.html +// +// The DallasTemperature library can do all this work for you! +// http://milesburton.com/Dallas_Temperature_Control_Library + +OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary) + +void setup(void) { + Serial.begin(9600); +} + +void loop(void) { + byte i; + byte present = 0; + byte type_s; + byte data[12]; + byte addr[8]; + float celsius, fahrenheit; + + if ( !ds.search(addr)) { + Serial.println("No more addresses."); + Serial.println(); + ds.reset_search(); + delay(250); + return; + } + + Serial.print("ROM ="); + for( i = 0; i < 8; i++) { + Serial.write(' '); + Serial.print(addr[i], HEX); + } + + if (OneWire::crc8(addr, 7) != addr[7]) { + Serial.println("CRC is not valid!"); + return; + } + Serial.println(); + + // the first ROM byte indicates which chip + switch (addr[0]) { + case 0x10: + Serial.println(" Chip = DS18S20"); // or old DS1820 + type_s = 1; + break; + case 0x28: + Serial.println(" Chip = DS18B20"); + type_s = 0; + break; + case 0x22: + Serial.println(" Chip = DS1822"); + type_s = 0; + break; + default: + Serial.println("Device is not a DS18x20 family device."); + return; + } + + ds.reset(); + ds.select(addr); + ds.write(0x44, 1); // start conversion, with parasite power on at the end + + delay(1000); // maybe 750ms is enough, maybe not + // we might do a ds.depower() here, but the reset will take care of it. + + present = ds.reset(); + ds.select(addr); + ds.write(0xBE); // Read Scratchpad + + Serial.print(" Data = "); + Serial.print(present, HEX); + Serial.print(" "); + for ( i = 0; i < 9; i++) { // we need 9 bytes + data[i] = ds.read(); + Serial.print(data[i], HEX); + Serial.print(" "); + } + Serial.print(" CRC="); + Serial.print(OneWire::crc8(data, 8), HEX); + Serial.println(); + + // Convert the data to actual temperature + // because the result is a 16 bit signed integer, it should + // be stored to an "int16_t" type, which is always 16 bits + // even when compiled on a 32 bit processor. + int16_t raw = (data[1] << 8) | data[0]; + if (type_s) { + raw = raw << 3; // 9 bit resolution default + if (data[7] == 0x10) { + // "count remain" gives full 12 bit resolution + raw = (raw & 0xFFF0) + 12 - data[6]; + } + } else { + byte cfg = (data[4] & 0x60); + // at lower res, the low bits are undefined, so let's zero them + if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms + else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms + else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms + //// default is 12 bit resolution, 750 ms conversion time + } + celsius = (float)raw / 16.0; + fahrenheit = celsius * 1.8 + 32.0; + Serial.print(" Temperature = "); + Serial.print(celsius); + Serial.print(" Celsius, "); + Serial.print(fahrenheit); + Serial.println(" Fahrenheit"); +} diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS2408_Switch/DS2408_Switch.pde b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS2408_Switch/DS2408_Switch.pde new file mode 100644 index 0000000..d171f9b --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS2408_Switch/DS2408_Switch.pde @@ -0,0 +1,77 @@ +#include + +/* + * DS2408 8-Channel Addressable Switch + * + * Writte by Glenn Trewitt, glenn at trewitt dot org + * + * Some notes about the DS2408: + * - Unlike most input/output ports, the DS2408 doesn't have mode bits to + * set whether the pins are input or output. If you issue a read command, + * they're inputs. If you write to them, they're outputs. + * - For reading from a switch, you should use 10K pull-up resisters. + */ + +void PrintBytes(uint8_t* addr, uint8_t count, bool newline=0) { + for (uint8_t i = 0; i < count; i++) { + Serial.print(addr[i]>>4, HEX); + Serial.print(addr[i]&0x0f, HEX); + } + if (newline) + Serial.println(); +} + +void ReadAndReport(OneWire* net, uint8_t* addr) { + Serial.print(" Reading DS2408 "); + PrintBytes(addr, 8); + Serial.println(); + + uint8_t buf[13]; // Put everything in the buffer so we can compute CRC easily. + buf[0] = 0xF0; // Read PIO Registers + buf[1] = 0x88; // LSB address + buf[2] = 0x00; // MSB address + net->write_bytes(buf, 3); + net->read_bytes(buf+3, 10); // 3 cmd bytes, 6 data bytes, 2 0xFF, 2 CRC16 + net->reset(); + + if (!OneWire::check_crc16(buf, 11, &buf[11])) { + Serial.print("CRC failure in DS2408 at "); + PrintBytes(addr, 8, true); + return; + } + Serial.print(" DS2408 data = "); + // First 3 bytes contain command, register address. + Serial.println(buf[3], BIN); +} + +OneWire net(10); // on pin 10 + +void setup(void) { + Serial.begin(9600); +} + +void loop(void) { + byte i; + byte present = 0; + byte addr[8]; + + if (!net.search(addr)) { + Serial.print("No more addresses.\n"); + net.reset_search(); + delay(1000); + return; + } + + if (OneWire::crc8(addr, 7) != addr[7]) { + Serial.print("CRC is not valid!\n"); + return; + } + + if (addr[0] != 0x29) { + PrintBytes(addr, 8); + Serial.print(" is not a DS2408.\n"); + return; + } + + ReadAndReport(&net, addr); +} diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS250x_PROM/DS250x_PROM.pde b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS250x_PROM/DS250x_PROM.pde new file mode 100644 index 0000000..baa51c8 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/examples/DS250x_PROM/DS250x_PROM.pde @@ -0,0 +1,90 @@ +/* +DS250x add-only programmable memory reader w/SKIP ROM. + + The DS250x is a 512/1024bit add-only PROM(you can add data but cannot change the old one) that's used mainly for device identification purposes + like serial number, mfgr data, unique identifiers, etc. It uses the Maxim 1-wire bus. + + This sketch will use the SKIP ROM function that skips the 1-Wire search phase since we only have one device connected in the bus on digital pin 6. + If more than one device is connected to the bus, it will fail. + Sketch will not verify if device connected is from the DS250x family since the skip rom function effectively skips the family-id byte readout. + thus it is possible to run this sketch with any Maxim OneWire device in which case the command CRC will most likely fail. + Sketch will only read the first page of memory(32bits) starting from the lower address(0000h), if more than 1 device is present, then use the sketch with search functions. + Remember to put a 4.7K pullup resistor between pin 6 and +Vcc + + To change the range or ammount of data to read, simply change the data array size, LSB/MSB addresses and for loop iterations + + This example code is in the public domain and is provided AS-IS. + + Built with Arduino 0022 and PJRC OneWire 2.0 library http://www.pjrc.com/teensy/td_libs_OneWire.html + + created by Guillermo Lovato + march/2011 + + */ + +#include +OneWire ds(6); // OneWire bus on digital pin 6 +void setup() { + Serial.begin (9600); +} + +void loop() { + byte i; // This is for the for loops + boolean present; // device present var + byte data[32]; // container for the data from device + byte leemem[3] = { // array with the commands to initiate a read, DS250x devices expect 3 bytes to start a read: command,LSB&MSB adresses + 0xF0 , 0x00 , 0x00 }; // 0xF0 is the Read Data command, followed by 00h 00h as starting address(the beginning, 0000h) + byte ccrc; // Variable to store the command CRC + byte ccrc_calc; + + present = ds.reset(); // OneWire bus reset, always needed to start operation on the bus, returns a 1/TRUE if there's a device present. + ds.skip(); // Skip ROM search + + if (present == TRUE){ // We only try to read the data if there's a device present + Serial.println("DS250x device present"); + ds.write(leemem[0],1); // Read data command, leave ghost power on + ds.write(leemem[1],1); // LSB starting address, leave ghost power on + ds.write(leemem[2],1); // MSB starting address, leave ghost power on + + ccrc = ds.read(); // DS250x generates a CRC for the command we sent, we assign a read slot and store it's value + ccrc_calc = OneWire::crc8(leemem, 3); // We calculate the CRC of the commands we sent using the library function and store it + + if ( ccrc_calc != ccrc) { // Then we compare it to the value the ds250x calculated, if it fails, we print debug messages and abort + Serial.println("Invalid command CRC!"); + Serial.print("Calculated CRC:"); + Serial.println(ccrc_calc,HEX); // HEX makes it easier to observe and compare + Serial.print("DS250x readback CRC:"); + Serial.println(ccrc,HEX); + return; // Since CRC failed, we abort the rest of the loop and start over + } + Serial.println("Data is: "); // For the printout of the data + for ( i = 0; i < 32; i++) { // Now it's time to read the PROM data itself, each page is 32 bytes so we need 32 read commands + data[i] = ds.read(); // we store each read byte to a different position in the data array + Serial.print(data[i]); // printout in ASCII + Serial.print(" "); // blank space + } + Serial.println(); + delay(5000); // Delay so we don't saturate the serial output + } + else { // Nothing is connected in the bus + Serial.println("Nothing connected"); + delay(3000); + } +} + + + + + + + + + + + + + + + + + diff --git a/peltier_controller/arduino_sketch/required libs/OneWire/keywords.txt b/peltier_controller/arduino_sketch/required libs/OneWire/keywords.txt new file mode 100644 index 0000000..bee5d90 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/OneWire/keywords.txt @@ -0,0 +1,38 @@ +####################################### +# Syntax Coloring Map For OneWire +####################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### + +OneWire KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +reset KEYWORD2 +write_bit KEYWORD2 +read_bit KEYWORD2 +write KEYWORD2 +write_bytes KEYWORD2 +read KEYWORD2 +read_bytes KEYWORD2 +select KEYWORD2 +skip KEYWORD2 +depower KEYWORD2 +reset_search KEYWORD2 +search KEYWORD2 +crc8 KEYWORD2 +crc16 KEYWORD2 +check_crc16 KEYWORD2 + +####################################### +# Instances (KEYWORD2) +####################################### + + +####################################### +# Constants (LITERAL1) +####################################### diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_AdaptiveTunings/PID_AdaptiveTunings.ino b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_AdaptiveTunings/PID_AdaptiveTunings.ino new file mode 100644 index 0000000..450c4fa --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_AdaptiveTunings/PID_AdaptiveTunings.ino @@ -0,0 +1,53 @@ +/******************************************************** + * PID Adaptive Tuning Example + * One of the benefits of the PID library is that you can + * change the tuning parameters at any time. this can be + * helpful if we want the controller to be agressive at some + * times, and conservative at others. in the example below + * we set the controller to use Conservative Tuning Parameters + * when we're near setpoint and more agressive Tuning + * Parameters when we're farther away. + ********************************************************/ + +#include + +//Define Variables we'll be connecting to +double Setpoint, Input, Output; + +//Define the aggressive and conservative Tuning Parameters +double aggKp=4, aggKi=0.2, aggKd=1; +double consKp=1, consKi=0.05, consKd=0.25; + +//Specify the links and initial tuning parameters +PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT); + +void setup() +{ + //initialize the variables we're linked to + Input = analogRead(0); + Setpoint = 100; + + //turn the PID on + myPID.SetMode(AUTOMATIC); +} + +void loop() +{ + Input = analogRead(0); + + double gap = abs(Setpoint-Input); //distance away from setpoint + if(gap<10) + { //we're close to setpoint, use conservative tuning parameters + myPID.SetTunings(consKp, consKi, consKd); + } + else + { + //we're far from setpoint, use aggressive tuning parameters + myPID.SetTunings(aggKp, aggKi, aggKd); + } + + myPID.Compute(); + analogWrite(3,Output); +} + + diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_Basic/PID_Basic.ino b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_Basic/PID_Basic.ino new file mode 100644 index 0000000..ed44396 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_Basic/PID_Basic.ino @@ -0,0 +1,31 @@ +/******************************************************** + * PID Basic Example + * Reading analog input 0 to control analog PWM output 3 + ********************************************************/ + +#include + +//Define Variables we'll be connecting to +double Setpoint, Input, Output; + +//Specify the links and initial tuning parameters +PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT); + +void setup() +{ + //initialize the variables we're linked to + Input = analogRead(0); + Setpoint = 100; + + //turn the PID on + myPID.SetMode(AUTOMATIC); +} + +void loop() +{ + Input = analogRead(0); + myPID.Compute(); + analogWrite(3,Output); +} + + diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_RelayOutput/PID_RelayOutput.ino b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_RelayOutput/PID_RelayOutput.ino new file mode 100644 index 0000000..ed67e03 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/Examples/PID_RelayOutput/PID_RelayOutput.ino @@ -0,0 +1,60 @@ +/******************************************************** + * PID RelayOutput Example + * Same as basic example, except that this time, the output + * is going to a digital pin which (we presume) is controlling + * a relay. the pid is designed to Output an analog value, + * but the relay can only be On/Off. + * + * to connect them together we use "time proportioning + * control" it's essentially a really slow version of PWM. + * first we decide on a window size (5000mS say.) we then + * set the pid to adjust its output between 0 and that window + * size. lastly, we add some logic that translates the PID + * output into "Relay On Time" with the remainder of the + * window being "Relay Off Time" + ********************************************************/ + +#include +#define RelayPin 6 + +//Define Variables we'll be connecting to +double Setpoint, Input, Output; + +//Specify the links and initial tuning parameters +PID myPID(&Input, &Output, &Setpoint,2,5,1, DIRECT); + +int WindowSize = 5000; +unsigned long windowStartTime; +void setup() +{ + windowStartTime = millis(); + + //initialize the variables we're linked to + Setpoint = 100; + + //tell the PID to range between 0 and the full window size + myPID.SetOutputLimits(0, WindowSize); + + //turn the PID on + myPID.SetMode(AUTOMATIC); +} + +void loop() +{ + Input = analogRead(0); + myPID.Compute(); + + /************************************************ + * turn the output pin on/off based on pid output + ************************************************/ + if(millis() - windowStartTime>WindowSize) + { //time to shift the Relay Window + windowStartTime += WindowSize; + } + if(Output < millis() - windowStartTime) digitalWrite(RelayPin,HIGH); + else digitalWrite(RelayPin,LOW); + +} + + + diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.cpp b/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.cpp new file mode 100644 index 0000000..6c95895 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.cpp @@ -0,0 +1,195 @@ +/********************************************************************************************** + * Arduino PID Library - Version 1.0.1 + * by Brett Beauregard brettbeauregard.com + * + * This Library is licensed under a GPLv3 License + **********************************************************************************************/ + +#if ARDUINO >= 100 + #include "Arduino.h" +#else + #include "WProgram.h" +#endif + +#include + +/*Constructor (...)********************************************************* + * The parameters specified here are those for for which we can't set up + * reliable defaults, so we need to have the user set them. + ***************************************************************************/ +PID::PID(double* Input, double* Output, double* Setpoint, + double Kp, double Ki, double Kd, int ControllerDirection) +{ + + myOutput = Output; + myInput = Input; + mySetpoint = Setpoint; + inAuto = false; + + PID::SetOutputLimits(0, 255); //default output limit corresponds to + //the arduino pwm limits + + SampleTime = 100; //default Controller Sample Time is 0.1 seconds + + PID::SetControllerDirection(ControllerDirection); + PID::SetTunings(Kp, Ki, Kd); + + lastTime = millis()-SampleTime; +} + + +/* Compute() ********************************************************************** + * This, as they say, is where the magic happens. this function should be called + * every time "void loop()" executes. the function will decide for itself whether a new + * pid Output needs to be computed. returns true when the output is computed, + * false when nothing has been done. + **********************************************************************************/ +bool PID::Compute() +{ + if(!inAuto) return false; + unsigned long now = millis(); + unsigned long timeChange = (now - lastTime); + if(timeChange>=SampleTime) + { + /*Compute all the working error variables*/ + double input = *myInput; + double error = *mySetpoint - input; + ITerm+= (ki * error); + if(ITerm > outMax) ITerm= outMax; + else if(ITerm < outMin) ITerm= outMin; + double dInput = (input - lastInput); + + /*Compute PID Output*/ + double output = kp * error + ITerm- kd * dInput; + + if(output > outMax) output = outMax; + else if(output < outMin) output = outMin; + *myOutput = output; + + /*Remember some variables for next time*/ + lastInput = input; + lastTime = now; + return true; + } + else return false; +} + + +/* SetTunings(...)************************************************************* + * This function allows the controller's dynamic performance to be adjusted. + * it's called automatically from the constructor, but tunings can also + * be adjusted on the fly during normal operation + ******************************************************************************/ +void PID::SetTunings(double Kp, double Ki, double Kd) +{ + if (Kp<0 || Ki<0 || Kd<0) return; + + dispKp = Kp; dispKi = Ki; dispKd = Kd; + + double SampleTimeInSec = ((double)SampleTime)/1000; + kp = Kp; + ki = Ki * SampleTimeInSec; + kd = Kd / SampleTimeInSec; + + if(controllerDirection ==REVERSE) + { + kp = (0 - kp); + ki = (0 - ki); + kd = (0 - kd); + } +} + +/* SetSampleTime(...) ********************************************************* + * sets the period, in Milliseconds, at which the calculation is performed + ******************************************************************************/ +void PID::SetSampleTime(int NewSampleTime) +{ + if (NewSampleTime > 0) + { + double ratio = (double)NewSampleTime + / (double)SampleTime; + ki *= ratio; + kd /= ratio; + SampleTime = (unsigned long)NewSampleTime; + } +} + +/* SetOutputLimits(...)**************************************************** + * This function will be used far more often than SetInputLimits. while + * the input to the controller will generally be in the 0-1023 range (which is + * the default already,) the output will be a little different. maybe they'll + * be doing a time window and will need 0-8000 or something. or maybe they'll + * want to clamp it from 0-125. who knows. at any rate, that can all be done + * here. + **************************************************************************/ +void PID::SetOutputLimits(double Min, double Max) +{ + if(Min >= Max) return; + outMin = Min; + outMax = Max; + + if(inAuto) + { + if(*myOutput > outMax) *myOutput = outMax; + else if(*myOutput < outMin) *myOutput = outMin; + + if(ITerm > outMax) ITerm= outMax; + else if(ITerm < outMin) ITerm= outMin; + } +} + +/* SetMode(...)**************************************************************** + * Allows the controller Mode to be set to manual (0) or Automatic (non-zero) + * when the transition from manual to auto occurs, the controller is + * automatically initialized + ******************************************************************************/ +void PID::SetMode(int Mode) +{ + bool newAuto = (Mode == AUTOMATIC); + if(newAuto == !inAuto) + { /*we just went from manual to auto*/ + PID::Initialize(); + } + inAuto = newAuto; +} + +/* Initialize()**************************************************************** + * does all the things that need to happen to ensure a bumpless transfer + * from manual to automatic mode. + ******************************************************************************/ +void PID::Initialize() +{ + ITerm = *myOutput; + lastInput = *myInput; + if(ITerm > outMax) ITerm = outMax; + else if(ITerm < outMin) ITerm = outMin; +} + +/* SetControllerDirection(...)************************************************* + * The PID will either be connected to a DIRECT acting process (+Output leads + * to +Input) or a REVERSE acting process(+Output leads to -Input.) we need to + * know which one, because otherwise we may increase the output when we should + * be decreasing. This is called from the constructor. + ******************************************************************************/ +void PID::SetControllerDirection(int Direction) +{ + if(inAuto && Direction !=controllerDirection) + { + kp = (0 - kp); + ki = (0 - ki); + kd = (0 - kd); + } + controllerDirection = Direction; +} + +/* Status Funcions************************************************************* + * Just because you set the Kp=-1 doesn't mean it actually happened. these + * functions query the internal state of the PID. they're here for display + * purposes. this are the functions the PID Front-end uses for example + ******************************************************************************/ +double PID::GetKp(){ return dispKp; } +double PID::GetKi(){ return dispKi;} +double PID::GetKd(){ return dispKd;} +int PID::GetMode(){ return inAuto ? AUTOMATIC : MANUAL;} +int PID::GetDirection(){ return controllerDirection;} + diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.h b/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.h new file mode 100644 index 0000000..6f86697 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/PID_v1.h @@ -0,0 +1,80 @@ +#ifndef PID_v1_h +#define PID_v1_h +#define LIBRARY_VERSION 1.0.0 + +class PID +{ + + + public: + + //Constants used in some of the functions below + #define AUTOMATIC 1 + #define MANUAL 0 + #define DIRECT 0 + #define REVERSE 1 + + //commonly used functions ************************************************************************** + PID(double*, double*, double*, // * constructor. links the PID to the Input, Output, and + double, double, double, int); // Setpoint. Initial tuning parameters are also set here + + void SetMode(int Mode); // * sets PID to either Manual (0) or Auto (non-0) + + bool Compute(); // * performs the PID calculation. it should be + // called every time loop() cycles. ON/OFF and + // calculation frequency can be set using SetMode + // SetSampleTime respectively + + void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but + //it's likely the user will want to change this depending on + //the application + + + + //available but not commonly used functions ******************************************************** + void SetTunings(double, double, // * While most users will set the tunings once in the + double); // constructor, this function gives the user the option + // of changing tunings during runtime for Adaptive control + void SetControllerDirection(int); // * Sets the Direction, or "Action" of the controller. DIRECT + // means the output will increase when error is positive. REVERSE + // means the opposite. it's very unlikely that this will be needed + // once it is set in the constructor. + void SetSampleTime(int); // * sets the frequency, in Milliseconds, with which + // the PID calculation is performed. default is 100 + + + + //Display functions **************************************************************** + double GetKp(); // These functions query the pid for interal values. + double GetKi(); // they were created mainly for the pid front-end, + double GetKd(); // where it's important to know what is actually + int GetMode(); // inside the PID. + int GetDirection(); // + + private: + void Initialize(); + + double dispKp; // * we'll hold on to the tuning parameters in user-entered + double dispKi; // format for display purposes + double dispKd; // + + double kp; // * (P)roportional Tuning Parameter + double ki; // * (I)ntegral Tuning Parameter + double kd; // * (D)erivative Tuning Parameter + + int controllerDirection; + + double *myInput; // * Pointers to the Input, Output, and Setpoint variables + double *myOutput; // This creates a hard link between the variables and the + double *mySetpoint; // PID, freeing the user from having to constantly tell us + // what these values are. with pointers we'll just know. + + unsigned long lastTime; + double ITerm, lastInput; + + unsigned long SampleTime; + double outMin, outMax; + bool inAuto; +}; +#endif + diff --git a/peltier_controller/arduino_sketch/required libs/PID_v1/keywords.txt b/peltier_controller/arduino_sketch/required libs/PID_v1/keywords.txt new file mode 100644 index 0000000..55969c1 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/PID_v1/keywords.txt @@ -0,0 +1,34 @@ +####################################### +# Syntax Coloring Map For PID Library +####################################### + +####################################### +# Datatypes (KEYWORD1) +####################################### + +PID KEYWORD1 + +####################################### +# Methods and Functions (KEYWORD2) +####################################### + +SetMode KEYWORD2 +Compute KEYWORD2 +SetOutputLimits KEYWORD2 +SetTunings KEYWORD2 +SetControllerDirection KEYWORD2 +SetSampleTime KEYWORD2 +GetKp KEYWORD2 +GetKi KEYWORD2 +GetKd KEYWORD2 +GetMode KEYWORD2 +GetDirection KEYWORD2 + +####################################### +# Constants (LITERAL1) +####################################### + +AUTOMATIC LITERAL1 +MANUAL LITERAL1 +DIRECT LITERAL1 +REVERSE LITERAL1 \ No newline at end of file diff --git a/peltier_controller/arduino_sketch/required libs/README.TXT b/peltier_controller/arduino_sketch/required libs/README.TXT new file mode 100644 index 0000000..be49201 --- /dev/null +++ b/peltier_controller/arduino_sketch/required libs/README.TXT @@ -0,0 +1,2 @@ +install the required libraries by copying directories +OneWire and PID_v1 to $(HOME)/Arduino/libraries diff --git a/peltier_controller/webGUI/index.pl b/peltier_controller/webGUI/index.pl new file mode 100755 index 0000000..395cb2f --- /dev/null +++ b/peltier_controller/webGUI/index.pl @@ -0,0 +1,155 @@ +#!/usr/bin/perl + +package this; + + + + + +use strict; +use warnings; + + +use POSIX qw/strftime/; +use POSIX; +use CGI ':standard'; +use CGI::Carp qw(fatalsToBrowser); +use Data::Dumper; +use Pod::Usage; +use serial_communication; +# use manage_settings; +# use Switch; + + + +my $self = this->new(); +$self->main(); + + +## methods + +sub new { + my $class = shift; + my %options = @_; + + my $self = {}; # put tons of default values here (if you wish); + + $self->{constants} = { + + }; + + $self = { + %$self, + %options + }; + bless($self, $class); + return $self; +} + + +sub main { + # go to other methods from here + my $self = shift; + + # receive CGI query + $self->{query} = CGI->new(); + my $action = $self->{query}->param('action') || "help"; + + # go only to methods that are in the following dispatch table: + # if associated value is one, sub can be called via CGI + $self->{dispatch} = { + help => 1, + test => 1, + read_register => 1, + write_register => 1, + find_baseline => 1, + signal_range => 1, + count => 1 + }; + + # if method exists, execute it, if not complain and show help message + if ($self->{dispatch}->{$action} ) { + my $args = $self->CGI_parameters(); + + # here the corresponding method is called + my $return = $self->$action(%$args); + # does it return anything? + if(defined($return)){ # we get a return value + if(ref(\$return) eq "SCALAR"){ # just print it if it is a scalar + print "$return\n"; + } else { # use Data::Dumper to display a hash + print "method returns a hash:\n"; + print Dumper $return; + } + } + } else { + print "$action is not a valid action!\n\n"; + $self->help(1); + } +} + + + +sub setup_serial { + my $self = shift; + # create new register IO object, with CGI parameters "tty" and "baudrate" + my $regio_options = $self->CGI_parameters(items => ["tty","baudrate"]); + $self->{serial} = regio->new(%$regio_options); +} + + +sub help { + my $self = shift; + my $verbose = shift; +# print "This is the help message!\n"; + pod2usage(verbose => $verbose); + exit; + +} +sub test { + my $self = shift; + my %options = @_; + print "This is the test message!\n"; + print "The test routine has received the following options:\n\n"; + + for my $item ( keys %options ) { + print "key: $item\tvalue: ".$options{$item}."\n"; + } + exit; + +} + + +sub CGI_parameters { + # for each item on the list, get the + # designated parameter from the CGI query and + # store it in the target hash IF the parameter is + # defined in the query! + + my $self = shift; + my %options = @_; + my $query = $self->{query}; + my $items = $options{items}; + # target can be left undefined, then a new hash is created + # and returned + my $target; + $target = $options{target} if defined($options{target}); + + + if(defined($items)){ # if there is a list of parameters + for my $item (@{$items}){ + if(defined($query->param($item))){ + $target->{$item} = $query->param($item); + } + } + } else { # if there is no list of parameters + # extract all parameters + for my $item($query->param) { + $target->{$item} = $query->param($item); + } + } + return $target; +} + + + diff --git a/peltier_controller/webGUI/serial_communication.pm b/peltier_controller/webGUI/serial_communication.pm new file mode 100644 index 0000000..eee295d --- /dev/null +++ b/peltier_controller/webGUI/serial_communication.pm @@ -0,0 +1,151 @@ +################################################## +## serial communication ## +################################################## + +package serial_communication; + +use Time::HiRes; +use Device::SerialPort; + +sub new { + my $class = shift; + my %options = @_; + my $self = {}; + + # set some defaults + $self->{baudrate} = 115200; #does not matter for virtual comports + $self->{tty} = "/dev/ttyACM0"; + + # partially overwrite defaults with options + $self = { + %$self, + %options + }; + + bless($self, $class); + + $self->{port} = new Device::SerialPort($self->{tty}); + unless ($self->{port}) + { + die "can't open serial interface ".$self->{tty}."\n"; + } + + $self->{port}->user_msg('ON'); + $self->{port}->baudrate($self->{baudrate}); + $self->{port}->parity("none"); + $self->{port}->databits(8); + $self->{port}->stopbits(1); + $self->{port}->handshake("none"); + $self->{port}->write_settings; + + return $self; +} + + + + +# sub read { +# my $self = shift; +# my $addr = shift; +# my $val = $self->communicate("R".chr($addr)); +# printf("response: %d\n",$val) if $self->{verbose}; +# return $val; +# } +# +# sub write { +# my $self = shift; +# my $addr = shift; +# my $value = shift; +# +# print "send addr:$addr value:$value\n" if $self->{verbose}; +# +# my $byte3 = chr(int($value)>>24); +# my $byte2 = chr((int($value)>>16)&0xFF); +# my $byte1 = chr((int($value)>>8)&0xFF); +# my $byte0 = chr(int($value)&0xFF); +# +# $self->communicate("W".chr($addr).$byte3.$byte2.$byte1.$byte0); +# } + + +# sub communicate { +# my $self = shift; +# my $command = shift; +# +# my $ack_timeout=0.5; +# my $rstring; +# +# $self->{port}->are_match(""); +# $self->{port}->read_char_time(1); # avg time between read char +# $self->{port}->read_const_time(0); # const time for read (milliseconds) +# $self->{port}->lookclear; +# $self->{port}->write("$command\n"); +# +# my $ack = 0; +# +# my ($count, $a) = $self->{port}->read(12);# blocks until the read is complete or a Timeout occurs. +# +# if($a=~ m/R(.{4})/s) { +# $rstring= $1; +# $ack=1; +# } +# +# if($ack){ +# # my $byte3 = ord(substr($rstring,0,1)); +# # my $byte2 = ord(substr($rstring,1,1)); +# # my $byte1 = ord(substr($rstring,2,1)); +# # my $byte0 = ord(substr($rstring,3,1)); +# # my $val = (($byte3<<24)|($byte2<<16)|($byte1<<8)|$byte0); +# my $val = unpack('l',reverse pack('a4',substr($rstring,0,4))); +# return $val; +# } else { +# print "no answer\n" if $self->{verbose}; +# } +# } + + +sub communicate { + + my $command = $_[0]; # variable not used + + + + $port->lookclear; + + + + # read what has accumulated in the serial buffer + # do max .5 seconds of polling + my $temp; + my $pid; + my $setpoint; + + for (my $i = 0; ($i<200) ;$i++) { + my $a = $port->lookfor; + unless(defined($temp)){ + if( $a =~ m/Temperature = ([\+\-0-9\.]+) Celsius/) { + $temp = $1; + } + } else { + if( $a =~ m/PID Output = ([\+\-0-9\.]+)/) { + $pid = $1; + return ($temp,$pid); + } + } + Time::HiRes::sleep(.01); + } + return {temp => $temp, pid => $pid, setpoint => $setpoint} +} + + + + + + + + + + + + +1; \ No newline at end of file